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Abstract

lifetime measurements.

Background: Understanding biological networks requires identifying their elementary protein interactions and
establishing the timing and strength of those interactions. Fluorescence microscopy and Forster resonance energy
transfer (FRET) have the potential to reveal such information because they allow molecular interactions to be
monitored in living cells, but it is unclear how best to analyze FRET data. Existing techniques differ in assumptions,
manipulations of data and the quantities they derive. To address this variation, we have developed a versatile
Bayesian analysis based on clear assumptions and systematic statistics.

Results: Our algorithm infers values of the FRET efficiency and dissociation constant, K, between a pair of
fluorescently tagged proteins. It gives a posterior probability distribution for these parameters, conveying more
extensive information than single-value estimates can. The width and shape of the distribution reflects the
reliability of the estimate and we used simulated data to determine how measurement noise, data quantity and
fluorophore concentrations affect the inference. We are able to show why varying concentrations of donors and
acceptors is necessary for estimating K,. We further demonstrate that the inference improves if additional
knowledge is available, for example of the FRET efficiency, which could be obtained from separate fluorescence

Conclusions: We present a general, systematic approach for extracting quantitative information on molecular
interactions from FRET data. Our method vyields both an estimate of the dissociation constant and the uncertainty
associated with that estimate. The information produced by our algorithm can help design optimal experiments
and is fundamental for developing mathematical models of biochemical networks.

Background

Proteins work together continuously in the cells of all
living things, generating cascades of reactions that are
vital for life. To fully understand each individual pro-
tein’s task requires discovering the timing, location, and
strength of its interactions. To acquire this detailed
information, fluorescence microscopy methods are ideal
because they can provide dynamic, single-cell data at
high spatial resolution [1,2]. One fluorescence tool that
enables researchers to observe protein interactions in
living cells is Forster resonance energy transfer (FRET).
FRET data has the potential to yield biochemical con-
stants, which are critical for modeling biological
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systems, but measuring protein interactions from FRET
data requires careful quantitative analysis.

FRET is a physical process where a molecule in an
excited energetic state (the donor) transfers energy to a
nearby ground-state molecule (the acceptor). The
chance that an excited donor will transfer its energy to
an acceptor (known as the FRET efficiency, E;) depends
on the distance between the donor and acceptor (which
must be between 1 and 10 nm for FRET to occur), their
relative orientation, and the extent to which the donor’s
fluorescence emission peak overlaps the excitation peak
of the acceptor [3]. Optimal conditions for energy trans-
fer occur when the distance between donor and accep-
tor is minimal, the molecules’ electric dipoles are
aligned, and the spectral overlap is significant.

When FRET is used to study protein interactions in liv-
ing cells, the proteins under investigation are fused to
fluorescent tags (often variants of the green fluorescent
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protein) that act as the donors and acceptors. When the
proteins interact, they bring the fluorescent tags together
so that FRET may occur. FRET increases the number of
photons emitted by acceptors and reduces both the num-
ber of photons emitted by donors and the donor’s fluores-
cence lifetime. To observe these effects, the most common
techniques for collecting FRET data include fluorescence
lifetime imaging (FLIM) and using a fluorescence micro-
scope or spectrofluorometer to record fluorescence inten-
sity after exposing samples to light that mainly excites
either donors or acceptors [4-6].

For FRET data to reveal information about the under-
lying protein interactions, complicating factors must be
dealt with. One confounding issue is spectral contami-
nation, which arises from the requirement that the
donor and acceptor must have overlapping spectra for
FRET to occur. Due to the overlap, excitation light
intended to excite one fluorophore may also excite the
other (spectral crosstalk), and, conversely, one fluoro-
phore may emit photons in the emission range of the
other (spectral bleed-through). Several FRET analysis
methods address this issue by calculating a FRET index,
which is the FRET signal corrected for contamination
from spectral overlap and normalised by donor or
acceptor concentrations [7-12]. Although they are
straightforward to calculate, FRET indices often bear an
indirect and nonlinear relationship to the underlying
concentrations and strength of protein interactions
[13,14]. Alternatively, the ratio of donors to acceptors
and the apparent FRET efficiency, which is the product
of the intrinsic FRET efficiency and the fraction of
donors (or acceptors) in complex, can be calculated
[15-19,14]. Such quantities can be measured, provided
calibrations are carried out using constructs consisting
of a donor linked to an acceptor [17,19], but again do
not relate directly to the dissocation constant (K,) of an
interaction.

Another significant challenge is that both the K, and
the FRET efficiency, Es, affect the observed signals, and
so neither can be determined independently of the other
based on data from a single sample. Ej has been esti-
mated from separate acceptor photobleaching [14] and
FLIM experiments [15], but these approaches have
drawbacks. Acceptor photo-bleaching is slow, irreversi-
ble, often fails to bleach all acceptors, and yields the
intrinsic FRET efficiency only when all donors are in
complex with acceptors [4-6]. FLIM requires specialized
equipment, is often slower than standard fluorescence
imaging, and analysis of FLIM data is complicated by
the multiexponential fluorescence decays of fluorescent
proteins [20]. There is however an alternative to directly
measuring E;: Many values of K; and Ej will be consis-
tent with data from a single cell or sample, but, by tak-
ing a set of data from samples that contain varying
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concentrations of donors and acceptors and analyzing it
altogether, it is possible to find the unique values of K,
and Ej; that are consistent with the ensemble [16,21].

Given these different approaches, it is not always
obvious which one should be applied in different situa-
tions and there is no consensus on the statistical analy-
sis, with each method processing the data differently
and most giving no procedure to test the reliability of
any estimates. A general method for inferring the K,
along with the uncertainty of that inference is necessary
for the standardization of quantitative FRET measure-
ments, the design of informative experiments, and for
providing in vivo parameters for developing models of
protein networks [22-24].

Here we propose a systematic analysis method that
explicitly includes models of the photophysics and
underlying chemical interactions and of measurement
noise. Building on a spectral model for FRET [25], we
develop a Bayesian algorithm to infer both the interac-
tion strength (in terms of the in vivo K;) and the
FRET efficiency. Applying our algorithm to simulated
data, we gain insight into how both experimental
design factors such as measurement noise, number of
measurements, fluorophore concentrations and ratios,
and prior information impact our estimate and its
uncertainty.

Results and Discussion

Algorithm

Overview of the mathematical model

FRET enables the study of molecular interactions in
diverse settings. To design a widely applicable analysis
technique, we consider a general system containing pro-
teins (or other molecules) that form complexes and are
labelled with fluorophores that act as FRET donors and
acceptors (Figure 1A). We assume that all the molecules
of interest are fluorescently tagged, so instead of refer-
ring to ‘donor-tagged proteins’ or ‘acceptor-tagged pro-
teins’, we simply refer to ‘donors’ and ‘acceptors’.

Our model relies on a few other assumptions. First,
we assume that donors and acceptors may be free or
form bimolecular, donor-acceptor complexes (i.e. [D] +
[D]-[A]

[DA] -~
Whether free or in complex, the fluorophores undergo
fluorescence excitation and emission (Figure 1B). In
complexes, the donor and acceptor are together and
FRET may also occur. We assume that FRET due to
random collisions between donors and acceptors occurs
seldom enough to be neglected. Finally, we assume that
donor-acceptor complexes all have the same FRET effi-
ciency, which is denoted Ej; and refers to the fraction of
instances where exciting a donor in complex leads to
excitation of the acceptor.

[A] = [DA]) with dissociation constant K;=
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Figure 1 Overview of interaction and photophysical model. (A)
In the underlying interaction, a donor-tagged protein binds an
acceptor-tagged protein with dissociation constant K. (B) During a
FRET experiment, photophysical events occur such as FRET, which
occurs between donors and acceptors in complex with efficiency £,
and the excitation of and emissions from donors and acceptors,
where the factor relating fluorescence observed in channel j to the
concentration of species S is al@. We include all possible spectral
overlap effects, allowing the donor and acceptor to be excited and
emit photons in all spectral channels.

_|_

Effai(DA)

For our general mathematical description of the FRET
system, we use a previously described spectral mixing
model [25] with slightly modified matrices. This model
relates concentrations of fluorescent molecules to the fluor-
escence observed at various excitation wavelengths and
ranges of emission wavelengths (spectral channels). It can
be written as a matrix equation in the following form [6]:

M % C = Iobs, 1)

where C is a vector of the concentrations of fluoro-
phores (C = ([D], [A], [DANT), Iops is a vector of the
fluorescence intensities observed for each spectral chan-
nel, and M is a matrix of the photophysical parameters
that relate the concentrations of fluorophore to the
observed intensities (Figure 1B).

The observed fluorescence intensities could represent
data obtained from fluorescence microscopy, spectro-
photometry or a flow cytometer. Microscopy images
would require standard image processing steps for quan-
tification, such as subtracting background fluorescence
and defining regions of interest such as areas within the
cytosol or nucleus for localized fluorescence [26].
Photophysics in the mathematical model
The matrix M contains all the relevant information
about the photophysical processes we model. In addition
to the expected direct excitation and emission, we
include resonance energy transfer, cross-talk (unin-
tended excitation) and bleed-through (acceptors emit-
ting in the donors’ typical emission range).
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The spectral mixing framework can represent any
number of spectral channels by increasing the dimen-
sions of the matrix, but we focus on the particular case
of three, which describes the most common ‘three-cube’
FRET experiments [12,7-9,14,18,17,21,16]. The first
spectral channel, known as the donor channel, consists
of an excitation wavelength that primarily excites donors
and an emission filter that collects photons from the
donor’s emission range. The second channel, the accep-
tor channel, consists of an excitation wavelength that
primarily excites acceptors and an emission filter that
collects photons from the acceptor’s emission range.
The third channel, the FRET channel, combines the
donor channel’s excitation wavelength with the acceptor
channel’s emission filter, so that donors are excited pre-
ferentially and the emissions are filtered to primarily
collect photons from acceptors. For three-cube FRET,
the detailed form of Eq (1) is

o’ dVh) ] T [
ag_D) ag_A) h(ER) | x| [A] | = Igf*"d , (2)
ag_ ) ag )fg,(Ef,) [DA] e

where  fi(Ep) = afD) (1—E)+ a,(A) + al(DA) -Ej- The

parameters al(s) each represent a combination of excita-

tion and emission information [25]:
a® = 1P Qs (3)

Here the subscript i refers to the spectral channel (for
the three-cube case, it is 1 for the donor channel, 2 for
the acceptor channel, and 3 for the FRET channel) and
the superscript (S) refers to the fluorescent species (D,
the donor; A, the acceptor; and DA, the complex). The
variable /; is the illumination intensity for the excitation
wavelength of channel j; gi(s) is the molar extinction

coefficient of species (S) with excitation wavelength
from channel i; Q¥ is the quantum yield of species (S);
and SES) is the product of the emission of species (S) at
the wavelengths of channel i and the sensitivity of the
detector to the emitted photons. We describe a calibra-
tion procedure for obtaining these values in the
Methods.

To illustrate Eq (2), consider the expression it yields
for [E)red, the intensity in the donor channel. The inten-
sity will be the sum of contributions from free donors,
free acceptors, and donor- acceptor complexes. The
contribution from free donors is agD) - D] and the con-
tribution from free acceptors is agA) - |A} which results
from cross-talk and bleed-through. The complex, DA,
can potentially produce contributions from donors not

undergoing FRET (a(lD) - (1 — Ep) - [DA])  from
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acceptors (agA). [DA]) and from FRET
(a(lDA) - Ef - [DA])- Adding these contributions together,
we obtain the following expression for the predicted

intensity in the donor channel, Igred,

= o D)+ alV - (4]
)

+ (a(lD) 1 = Bl +a® + 2PV Eﬁ) [DA].
Continuing the matrix multiplication yields analogous

expressions for Izred and Ilgred.

Molecular interactions in the mathematical model

To include K; in our model, we model the chemical

equilibrium, [D] + [A] = [DA]. Defining [Dy ] = [D] +

[D][A]

[DA]

we can compute the values of [DA], [D], and [A] in

terms of [Dy], [Ao], and K.

[DA] and [Ap] = [A] + [DA], and given that K; =

[DA] = (IPo] + [40] + K
®
- \/([DO] +[Ao] + Kg)* — 4 - [Dy] - [AO]) )

with [D] = [Dy] - [DA] and [A] = [Ao] - [DA].

Bayesian inference

Our aim is to infer the values of K; and Ej; from the
data. To this end, Bayesian inference is an ideal tool.
Given a model, it quantifies the knowledge gained from
a set of experimental observations about the parameters
of interest, including the uncertainty of that knowledge
[27]. That is, it allows us to update the prior probability
distribution, P (K, Es), which represents what is known
about the parameters before data has been acquired, to
the posterior probability distribution, P (K, Ej|data),
which reflects both the prior information and what is
learned from the data. According to Bayes’ theorem,

P(Ky, Ef | data) o P(data|Ky, Ef,)P(Kd, Ef,). (6)

The likelihood function, P (data|K, Es), can be expli-
citly expressed through our photophysical model and a
model of measurement noise. It quantifies the likelihood
of different values for K; and Ej given the current data.
We assume that the data follows a Gaussian distribution
centred around the predicted intensity given by Eq (2).
For three measurements, one from each of the three
spectral channels, the likelihood is:

P(data|Ky, Ef) o

d 2 d 2 d 2
B 1) (- @B -1) ()
1 e 20,% 203 2ap2
OpDOAOF
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The observed intensities for each channel are Ip, 14,
and /. IpDred, Iired and Igre‘i denote the predicted intensi-

ties and op, 04 and oF measure the magnitude of the
measurement noise in each channel and are approxi-
mated by the variances of the data in that channel
(Methods). For fitting, we use a Gaussian approximation
of Eq (7) based around the values of Dy and A, that
maximize the likelihood (see section on marginalization
of Dy and Ay in the Methods). Combining the likelihood
and prior probability distribution allows us to calculate
the posterior probability distribution and determine the
most probable values for our parameters of interest.
lllustration of method

To illustrate our method, we simulated data from three
cells (Figure 2A, left), although in practice, data could
come instead from cellular compartments or other sub-
cellular regions of interest. For simplicity, each cell con-
tains equal concentrations of donor ([Dy]) and acceptor
([Ao]). In the first cell, [Dy] = [Ao] = 0.2 uM; in the sec-
ond, [Dy] = [Ao] = 1 uM; and in the third, [Dy] = [Ag] =
5 uM. Other parameter values are given in the Methods.
We then simulated three-cube FRET measurements,
generating data for the donor, acceptor, and FRET chan-
nels (Figure 2A, right). We made a series of ten mea-
surements for each channel and each cell, to which we
added Gaussian noise so that the standard deviation of
the measurements was around 5% of the mean signal
strength. We define r as the ratio of the standard devia-
tion of the measurements to the mean signal strength;
in this case, » = 0.05.

To obtain the posterior probability distribution that
corresponds to this data for two parameters of interest,
K, and Eg, we used two methods, the results of which
should agree. First, because we are restricting our analy-
sis to two parameters, we can visualize the distribution
by computing the energy, the negative logarithm of the
posterior probability, over a grid of values of K; and Ej.
The resulting energy surface, shown in Figure 2B, was
minimal around the true values of the parameters. If we
were to extend our analysis to more than two para-
meters, including uncertainty in the al(s) constants for
instance, we would use a Markov chain Monte Carlo
(MCMC) algorithm to sample from the parameter
space. To show that the MCMC algorithm gives results
consistent with the energy surface, we used the algo-
rithm to sample the posterior probability distribution
for K; and E;. We ran the algorithm three times, start-
ing each time at different initial values. All three walks
converged on the same small region of equally probable
values: they are superimposed on the energy surface in
Figure 2B. Both methods therefore recover the true
values used to generate the data as optimal parameter
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Figure 2 Analysis of typical FRET data recovers true values of K4 and Eg,. A typical three-cube FRET experiment is simulated from three
virtual cells, each containing the indicated concentrations of donor- and acceptor- tagged proteins (A, left). The data is summarized in bar
graphs with mean + SD (A, right). Ten measurements/channel are made for each cell with 5% added measurement noise. For other parameters,
see Methods. The data was analyzed in two ways to find the values of Ky and £ consistent with the data. We first calculated the energy for an
array of parameter values; as the energy contour plot shows (B), the energy was minimal near the true parameter values. We also used a Monte
Carlo algorithm to explore K £ space, running 3 biased random walks starting from different initial positions (white *) and running for 12,000
steps. The paths of the walks (for clarity only the first 2,000 steps are shown) are superimposed on the contour plot (B) and all three converged
to a region around the true value which coincides with the energy minimum. Histograms of the locations visited by all three walks, including
only post-convergence steps (11,000 steps are included from each walk) act as approximate posterior distributions for K, and £, (C). The dashed
red lines indicate the true values of K, and E;, used to generate the data.

values. The approximate posterior probability distribu-
tions for K; and Ej. are shown in Figure 2C. The distri-
butions are estimated as the histograms of the three
walks, excluding the burn-in period before convergence
[28]. They peak near the parameter values used to simu-
late the data, indicating that the highly probable values
for K; and Ej predicted by the methods are accurate.
Inferring other quantities from FRET data

To further illustrate the versatility of our method, we
show that we can also use our model and Bayesian fra-
mework to estimate other parameters. Two instrument-
independent parameters that have been a focus of inter-
[DA]
[Dol’

15-19,14]. The analogous

est are the apparent FRET efficiency, E; = Ef -

[DO][
[Ao]
efficiency

and the ratio, 1y =

FRET
[DA]
[Ao]
estimate these quantities using our method, provided

apparent for the acceptor,

E, =Ep - , is the product of E; and r,,. We can

that a calibration has been carried out with cells expres-
sing only donors, only acceptors, and only a donor-
acceptor construct. The FRET efficiency of the construct
need not be known. Supposing we have calibrated the

parameters al(s) of Eq 2 relative to agA), which is taken to
be unity, then we can express Eq 2 just in terms of [Ag]
with [Do] = rg4[Ao] and Ez[DA] = E; rag.[Ao]. We can
analytically maximize the posterior probability of r,,
and E; as a function of [Ay] by setting the derivative of
the probability with respect to [Ag] equal to zero and
solving for this optimal [A¢] in terms of r,, and E,;. Our
MCMC algorithm can be used to sample values of r,,
and E, that are consistent with the data.

Testing

Algorithm reflects data quality

An algorithm for estimating parameter values should
report not just an estimate of the most probable para-
meter values but also the reliability of that estimate.
To evaluate this aspect of our algorithm, we measured
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both the error and the uncertainty of its output. We
defined the error as the discrepancy between the mean
of the posterior probability distribution and the true

Mean value
value. We calculated error as log2<T : ),
rue value

meaning that a perfect estimate would have zero error.
Because under experimental conditions we would not
know the true value, we also calculated the uncertainty
of the estimate as an indicator of the reliability even
when true values are unknown. The uncertainty corre-
sponds to the width of the posterior probability distri-
butions for K; and Eg. To prevent the magnitude of
the parameter of interest from skewing the uncertainty,
we use the relative uncertainty, calculated as the coeffi-
cient of variation (the standard deviation divided by
the mean).
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We first tested our algorithm in the presence of vary-
ing levels of measurement noise. As the examples in
Figure 3A suggest, when measurement noise increased,
the optimal regions in K; and Ej-space grew wider and
longer and the peak of the posterior probability distribu-
tion for K; often deviated from the true value (see Fig-
ure 3A inset). In Figures 3C and 3E, the error (upper
plot) and uncertainty (lower plot) for estimating K, are
shown and confirm that both the error and uncertainty
of the estimate increased with increasing noise. Similar
results were obtained for the estimate of E; (data not
shown).

Next, we verified that gathering more data would
improve the quality of the estimates of K; and E;. Such
data could be obtained by, for example, collecting sev-
eral images of the same sample or dividing a region of

Measurement Noise (%)

indicated by black lines. The plots of error (log, ™

true value

Gaussian noise. For other parameters, see Methods.
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Even when the true value is unknown, the relative uncertainty of the parameter estimate (coefficient of variation of locations visited by a walk) is
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interest into subregions. The examples in Figure 3B
show that with more measurements, the optimal region
became smaller and the peak of the posterior probability
distribution for K; moved closer to the true value (see
Figure 3B inset). Figures 3D and 3F show, as expected,
that increasing the number of measurements decreases
the error and uncertainty for the K; estimate. The effect
of data quantity on the error and uncertainty of the Es
estimate was similar (data not shown).

Overall, our algorithm reliably reflects the quality of the
data analyzed in the uncertainty it gives of its estimate
and accurately infers the values of K; and Ej. for 10 mea-
surements per cell per channel with 10% measurement
noise. We also note that in Figures 3C and 3D, the mean
error in K; remained close to zero, indicating that neither
measurement noise nor number of measurements sys-
tematically biased the location of the peak.

The total amount of donor, [D,], and the total amount of
acceptor, [Ayl, affect inference of K; and E;,

Inferring unique values of K, and Eg, requires varia-
tions in [Dy] and [Ay] A challenge in analyzing FRET
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data is that both Ej; and K affect the extent of FRET
that may occur, making it difficult to tease out the con-
tribution of each parameter. In general, for data from a
single pair of donor and acceptor concentrations, a
weak Ej and strong K can give rise to the same obser-
vations as a strong Eg and weak K;. However, because
our algorithm can analyze data from multiple cells at
once, it can overcome this challenge.

To demonstrate the problem, we analyzed a set of
simulated data from a single sample with [A¢] = [Do] =
1 uM. As Figure 4A shows, the resulting region of opti-
mal values had an elongated shape, indicating that many
equally probable solutions exist for {K,, Es} for that
dataset. To show that collecting more data from similar
cells does not help, we repeated the experiment, simu-
lating data from 3 cells with the same concentrations as
the first. As Figure 4B shows, including this data made
the region slightly narrower but did not change its elon-
gated shape.

The difficulty in determining K; without knowing Ej.
or vice versa can be overcome by analyzing data from

-4 — —
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Figure 4 Concentration variations determine shape of region of high probability. Using the Monte Carlo algorithm to analyze data from a
single cell containing [Do] = [Agl = 1 uM produced an elongated region of highly probable values (A), indicated by the collection of dots
showing the locations in (K, E5) visited by the biased random walk. These single-cell results are shown again in (B-E) (blue dots), with the results
from analyzing other data sets superimposed. Analyzing three identical cells instead of one produced a narrower but still elongated region (B).
However, when analyzing data from two cells (C and C inset) and three cells (D) with different concentrations of fluorophores, the resulting
regions were contracted. Analyzing cells individually showed that the elongated highly probable regions for each all intersected near the true
value (E). More extreme variation in concentrations led to an even smaller optimal region (F). In (A-F), there were 10 measurements/cell/channel,
3% added Gaussian noise, and 31,000 steps are shown for each walk. For other parameter values, see Methods.
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samples containing varying fluorophore concentrations
[16,21]. To quantitatively justify how varying concentra-
tions facilitates parameter fitting, we simulated data
from three cells containing different concentrations of
donors and acceptors. As Figure 4C shows, analyzing
data from two different cells decreased the size of the
region of equally probable values. Combining data from
a cell containing [Dy] = [A¢] = 1 uM with data from a
cell containing 0.5 yM eliminated high values of K,
(Figure 4C); combining data from a 1 yM cell and a 5
uM cell eliminated low values of K; (Figure 4C, inset).
As Figure 4D indicates, analyzing data from all three
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cells (0.5 uM, 1 uM, and 5 uM) together eliminated
higher and lower K, values, leaving a small region of
equally probable values that included the true values. To
show why varying fluorophore concentrations is effec-
tive, we analyzed data from each of the three cells in
Figure 4D individually. The optimal regions for each cell
are plotted in Figure 4E and clearly intersect at the true
value. Varying the concentrations more broadly can
further shrink the solution region (Figure 4F).

Inference is limited if [Dy] = [Ag] > K, or [Dy] = [Ay]
< K, Plots of complex formation vs. K, (Figure 5A,
insets) show that only K values within a limited range
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3 | | 8 18
/(“\ I /("? | . . . /(“\ I
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Figure 5 Gaining insight into optimal experimental design. The approximate posterior probability distributions for Ky (A) have different
shapes if the data analyzed was simulated from three cells containing equal concentrations of donors and acceptors which are much lower
than (left), higher than (right) or about equal to K, (centre). For the data analyzed in the left panel, for instance, the cells contained the
concentrations [Dg] = [Ao] = 0.2:10° uM, [Do] = [Ao] = 1-10° uM, and [Dg] = [Ag] = 5107 uM. Insets show amount of complex formed as a
function of K, for the indicated concentrations, demonstrating that where complex formation is insensitive to Ky corresponds to plateaus in the
posterior probability distributions for K. In each plot (or inset), a vertical dashed line (or red circle) indicates 10°M, the true value of Ky (A) had
36,000 steps/walk and 5% added noise. Exploring another aspect of fluorophore concentrations, increasing the ratio [Do] : [Ao] increases the
uncertainty in fitting Ky (B). As the ratio was increased (by keeping [Do] constant for the three cells at 0.2:10°M, 1.010°M and 5.0 10°M while
decreasing [Ao] according to the ratio), posterior probability distributions for K, broadened (true value indicated by dashed vertical line). Insets
show data used for fitting (bars marked ‘£, = 04) from the donor channel (left) and FRET channel (right) contrasted with data from the same
cells simulated with E;, = 0, demonstrating that the relative contribution of FRET decreases as [Do] : [Ao] increases. (B) had 50 measurements/cell/
channel, 36,000 steps/walk and 3% added noise. Bars show mean + SD. For other parameters, see Methods.
J
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significantly affect complex formation: outside this
range, further changes in K, have little effect. For
instance, when [Dg] = [Ao] = K, small changes in K, in
either direction affect [DA] (Figure 5A centre, inset).
However, when [Dg] = [Ag] << K,; (Figure 5A, left inset)
or [Dg] = [Ao] > K, (Figure 5A, right inset), only
changes to K; in one direction affect the amount of
[DA]. When a range of K, values are consistent with the
data, K; cannot be fit to a single value.

By finding the posterior probability distribution of K,
our algorithm predicts when a range of K, values will be
consistent with the data. First, we simulated data with
equal concentrations of acceptors and donors that were
very low or very high relative to K;. As shown in Figure
5A, the approximate posterior probability distributions of
K, for data simulated with relatively low or high concen-
trations form plateaus instead of single peaks. The plateaus
indicate that a range of K, values is equally probable and
consistent with the data. The posterior distribution
obtained for [Dgy] = [Ay] < K, reveals that K; could be
any number greater than approximately 10°M; the distri-
bution for [Dy] = [Ag] > K, reveals that K; < 10°M.

This analysis illustrates how posterior probability dis-

tributions for the parameters of interest can be more
informative than single values. For example, information
from posterior distributions can be useful for improving
experimental design. If one were to obtain plateaued
distributions like the two shown in Figure 5A, one could
recognize that the fluorophore concentrations were too
low or high relative to K; and devise a more informative
experiment.
The ratio [Dy]:[Ay] affects inference We also used our
algorithm to explore the effects of varying the ratio, [Dy]
: [Ao], on the algorithm’s ability to infer K, (Figure 5B)
and how these effects arise. While other authors have
reported that FRET data becomes increasingly unreliable
as the ratio [Do] : [Ao] deviates from unity [13], they
measured how noise propagates in FRET formulas and
did not directly address how the ratio impacts the mea-
surement of interaction strength. As Figure 5B shows,
the width of the approximate posterior distributions for
K, broaden as the ratio increases, meaning that the
uncertainty in the estimate increases. The peaks of the
distributions however remain close to the true values.
The same effect occurs when the ratio decreases (data
not shown).

The insets in Figure 5 illustrate why the ratio affects
the uncertainty, showing data from the donor and FRET
channels in the presence and absence of FRET. Here,
FRET contributes only a fraction of the observed signals.
This small contribution is particularly evident in the
FRET channel, where the change in the signal due to
FRET is small compared to the measurement error:
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measurement error is 3% and the increase in the FRET
channel from FRET is only 2.9% for [D] : [4o] = 1 and
drops to 0.7% for [Dy] : [Ao] = 10 (FRET is included by
changing the FRET efficiency from O to 0.4). As the
ratio increased, the relative shortage of acceptors meant
that fewer complexes could form, making the contribu-
tions from FRET smaller and causing the uncertainty of
the estimate to grow. In the absence of measurement
noise, however, our algorithm can estimate K; even
from very extreme ratios. These data also demonstrate
that with our method, we can make inferences about K,
even when FRET causes perceptible changes in only one
channel (e.g. the donor channel here).

Knowing how spectral overlap and the ratio of
donors to acceptors affect the inference of protein
interaction strength helps make it possible to design
informative experiments. For example, we find that in
each channel, the difference generated by FRET
depends on spectral overlap. In the donor channel,
where FRET decreases the signal, the relative change is
(a(lDA) - a(lD))/(a(lA)Ao + a(lD)Do)[DA]Ef,, meaning that
the observed change depends on the difference
between acceptor bleed-through, agDA), and donor

fluorescence, a(lD). Analogous changes occur in the
other channels. When [Dgy] = [A], the change in the
donor channel is proportional to
(aEDA) — agD))/(agA) + agD)), the change in the acceptor
channel to (a(DA) — a(ZD))/(agA) + agD)) and the change

2
in the FRET channel to (agDA) _ agD))/(agA) + agD))‘ In
(DA)

each channel, increasing the difference between g;

and al(D) would make experiments more informative.

Prior information improves estimate

A further advantage of our method is its flexibility. The
Bayesian framework makes it possible to incorporate
additional details we know about the system as prior
information, allowing us to more accurately represent
the system being analyzed and potentially improve our
estimate of the parameters of interest. To exploit this
feature, we tested whether including additional informa-
tion about the FRET efficiency would improve our infer-
ence of Es and K, Information about Eg could be
obtained, for example, from lifetime imaging experi-
ments [29].

Figure 6 shows the approximate posterior probability
distributions for E; and K, that result from analyzing
the same data in the presence and absence of prior
information for E;. We included slightly inaccurate
prior information with large uncertainty, supposing that
Ej; was measured to be 0.45 (instead of the true value,
Es = 0.4) with an uncertainty of 0.15. Even with this
limited information, the resulting histograms for both
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Figure 6 Prior information on E; improves estimate.
Approximate posterior distributions for g (upper panels) and Ky
(lower panels) obtained from using the MCMC algorithm to analyze
the same datasets in the absence (red) or presence (blue) of prior
knowledge about £; show that prior knowledge helps to improve
accuracy and reduce uncertainty of the estimate. True values are
indicated by vertical dashed lines and the inset shows the prior
distributions used (red is a uniform distribution and blue is a normal
distribution centred at 0.45 with a variance of 0.15). The plots on
the left show results from analyzing data where 10 measurements
were made in each channel for each of 3 cells with [Ag] = [Dgl = [.2,
1, 5110°M. The plots on the right show results from data from the
same cells, but with just 3 measurements/channel. 20,000 steps
were recorded for each biased biased random walk, with 5% added
noise. For other parameter values, see Methods.

K, and Ej. have taller, narrower peaks which are closer
to the true values compared to the histograms produced
by analyzing the same data in the absence of the prior
information. As expected, this improvement was more
substantial when we analyzed a set of data consisting of
just 3 measurements per cell per channel (Figure 6,
right column): prior information becomes more impor-
tant the less relevant information there is in the data.
As another form of prior information, we could also
include error in the calibration measurements for the
constants that relate molecular concentration to fluores-
cence in Eq (2). Incorporating this information would
make it possible to monitor the impact of that error on
the uncertainty of the final estimate of K.
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Summary of testing

We have shown, using typical, simulated FRET data,
that our algorithm accurately recovers the parameters of
interest. It responded consistently and intuitively to
changes in the amount of measurement noise present in
the data and the quantity of data. We also used the pos-
terior probability distributions we obtain for the para-
meters to gain insight into how the magnitude and
variation of the donor and acceptor concentrations
affect the ability of the algorithm to infer K,;. The algo-
rithm gave informative results even when given data
simulated with very high or low concentrations of
donors and acceptors relative to the K, although, as
expected, with this data it could not converge on a
unique pair of values for K; and Ez but gave upper or
lower bounds. Gaining an understanding of how experi-
mental parameters such as measurement noise, number
of measurements, spectral overlap and fluorophore con-
centrations affect inference allows experimenters to
design optimal experiments that yield information with
less uncertainty [24].

Conclusions

Fluorescence microscopy and FRET open a window
onto the cell, allowing us to observe protein interactions
as the cell functions as a complete system. However, for
protein interaction information from FRET data to be
integrated into models and improve our understanding
of biological systems, it must be reliably quantified,
including the uncertainty in the estimates produced [27].

For this purpose, we have presented an algorithm for
inferring the most probable values of the absolute or
relative in vivo dissociation constant and the FRET effi-
ciency from three-cube FRET data. Our algorithm pro-
duces estimates in terms of the posterior probability
distribution for the parameters of interest. Posterior
probability distributions yield more extensive informa-
tion than a single value can provide, conveying the relia-
bility of the estimates through the shape and width of
the distribution and giving upper or lower bounds on
parameters if the data is not more informative. Our
method requires only basic three-cube FRET data but
has the flexibility to use data from more spectral chan-
nels and incorporate other types of data, such as a sepa-
rate measure of the FRET efficiency. We have focused
on using our algorithm to fit E5 and K, but it can also
infer the apparent FRET efficiency and ratio of donors
to acceptors, other quantities sometimes used as mea-
sures of FRET [15-19,14].

In the examples described here, we make a few
assumptions, but these are not necessarily part of our
methodology. First, we use molar extinction coefficients
that must be measured separately or taken from the lit-
erature and assume that the literature measurements are
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valid in the cellular environment. Second, we assume
Gaussian measurement noise, but our model could be
straightforwardly adapted to include log-normal or other
types of noise. Finally, we have not taken into considera-
tion photo-bleaching, incomplete labelling or dark
states, but our model could readily be extended to
include these factors.

We have used simulated data to illustrate principles
that apply to real data, showing how, in practice, it is
best to infer the dissociation constant from FRET data.
Three-cube FRET experiments are a well-established
experimental technique [3-6]. For our method, the cali-
bration procedure we describe in the Methods for quan-

tifying the a}s) constants of Eq (2) is also necessary. The
procedure is similar to existing calibration methods.
Measuring relative values of al(D) and al(A) is a standard

part of FRET data collection, necessary for calibrating
the extent of spectral bleed-through and cross-talk. We
require calibration with a donor-acceptor construct to
relate the brightness of the donor to that of the accep-
tor, which is necessary for obtaining the relative K.
This calibration is not always a part of standard FRET
data collection, but it has been used in several studies
(8,18,17,4,14,19,21]. Alternatively, measuring the abso-
lute brightness per molecule, which is necessary for
measuring the absolute K, is more technically challen-
ging but has been achieved [30,31].

We have demonstrated that to infer the values of Ky
and Ep, it is important that the FRET data analyzed
come from samples containing varying concentrations of
donor- and acceptor-tagged proteins. The precise
amount of variation required is difficult to predict
because it depends on the measurement noise present
in the data, the number of measurements made, and the
extent of spectral bleed-through and cross-talk. Natu-
rally occurring variation in protein expression from cell
to cell generated sufficient variability for estimating the
FRET efficiency and relative dissociation constant [21],
at least in transiently transfected mammalian cells.

While a number of ad hoc methods exist for quantify-
ing protein interactions using FRET, our method contri-
butes something new in that it makes plain the spectral
information being used and the bio-chemical assump-
tions made about the system. Our model is general: it is
not specific to three-cube data and could be used to
analyze data with any number of spectral channels. It
can be straight-forwardly adapted to other experimental
situations, for instance to measure the dimerization affi-
nity of a homodimeric protein. Our approach is a Baye-
sian analysis that reveals the uncertainty in estimated
parameters and produces informative results for data
from a wide-range of experimental set-ups. It focuses on
determining what we can learn from experimental
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observations about the parameters of interest given clear
assumptions and a systematic, statistical analysis based
only on those assumptions.

Methods

Calibration of fluorescence constants, al(s)
The al(s) constants, which relate concentrations of single
fluorophores to observed fluorescence intensity, can be
obtained by calibration. Calibration of spectral cross-talk
and bleed-through is a standard part of FRET quantifi-
cation [4-6]. If the fluorophore concentrations can be
determined [30,31], then the values for the three agD)

and three al(A) constants can be obtained from samples
containing only donors or only acceptors. This calibra-
tion makes it possible to measure the absolute K.
Three-cube data from donor-only and acceptor-only
samples correspond to the following equations (from Eq

(2)):

I(DD),prcd _ a(lD) [Dol: IgD):prcd _ agD) -[Do;

®)
LIERENEN!
T P e

I;A),pred _ agA) . [AO]

To infer the values of the constants g™ and al(A) and

i
their uncertainty (due to measurement error), we can
sample from posterior distributions for al(D) and al(A)

given the calibration data. We will illustrate this proce-

dure for a more complicated example below.
(DA)
i

going FRET to its fluorescence in channel i, is more

Determining the g: ", which relate a complex under-

complicated because the agDA) depend on properties of
both the donor and the acceptor. However, from Eq
3), a®V = P QWSW), but ¢ - 1M QWSY. There-

(D)
(DA) _ & (4)

Pt w .Y, and so 4PV
i

fore, a ; can be obtained

through knowledge of the ratio of molar extinction
coefficients at the excitation wavelength for channel i.
The values of the molar extinction coefficients, &
and &“, may not always be available at these wave-
lengths, but they can be estimated from literature
values of the molar extinction coefficients (usually
measured at the fluorophore’s excitation peak) and the
excitation spectra of the donor and acceptor [25].
Interpreting the excitation spectra as the probability of
the fluorophore becoming excited and assuming that
the extinction coefficient is proportional to the prob-
ability of excitation, we can use the excitation spectra
to rescale the literature value of the extinction
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coefficient to the excitation wavelength of channel i.
This estimate is valid provided that the molar extinc-
tion coefficients obtained from the literature are not
significantly different from the molar extinction coeffi-
cients in the cellular environment of the experiment
(or provided that the change in environment affects
both donor and acceptor similarly).

When the relationship between brightness and con-
centration cannot be determined absolutely, relative
values for aED) and al(A) can be obtained from samples
containing only donors and only acceptors, along with
samples containing linked donor-acceptor constructs.
The constructs consist of a donor and an acceptor fluor-
ophore separated by a short linker of 5-10 amino acids
and have been used for FRET calibration in several stu-
dies [8,18,17,4,14,19,21]. The construct’s FRET effi-
ciency, E},, need not be known and can be determined
using the procedure we describe below.

The three-cube measurements on samples containing
only donors or only acceptors would correspond to Eqs
(8) and (9). Three-cube data obtained from samples
containing donor-acceptor constructs would correspond
to the following equations:

I(DDA),pred _

(D)
(a(lD)[l B+ a4 Cl Vs )[DA]
&1

(DA),pred
I, =

o)
D A A
<(a( - B+ a4 (A) 4 )Ec) (DA],

I/(‘DA),pred _

(D) ), gD)
(a37[1 - ] +a; ( 1)@

(10)

(A) C) [DA]

8(D) A
i a™ To infer the

where we have replaced a(DA) by ( a) i

values of the al(s) constants given cahbratlon data con-

sisting of three-cube measurements made on samples
with only donors, only acceptors, and donor-acceptor
complexes, we first define the general likelihood func-
tion of these experiments for a single sample:

P(data|a§s), ]C(f) =
3 n
-1 (i) pred 2
ngz(’k “h)
i=1

1
[T, e
k=1
where I(Ii), Igi), and Igi) are the i
donor, acceptor, and FRET channels, respectively. For a

(11)

measurements in the
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given sample, we assume that an equal number of mea-
surements, #, will be made in each channel and ¢ quan-
tifies the error of the measurements. The predicted
intensities in channel k, [}E’Wd, are given by Egs (8), (9)
and (10) and are a function of the constants al(s), the
concentrations of the species (donors, acceptors, or
donor-acceptor complexes), and also EfCT in the case of
the donor-acceptor construct. The full likelihood for all
the calibration data together would be the product of
three instances of Eq (11), one specified for each three-
cube experiment (donor-only, acceptor-only, or donor-
acceptor complex).

We are interested in the values of the al(s) but indiffer-
ent to the concentrations of fluorophores and complexes
in the samples. For this reason and because the concen-
trations of fluorophores and complexes will vary for dif-
ferent samples, it is useful to marginalize the calibration
likelihood over [Ay], [Do], and [DA]. We can also elimi-
nate o by marginalization [28], assuming the measure-
ment error is the same for all three spectral channels. If
this assumption does not hold, one can define oy for the
measurement error in each channel and either approxi-
mate each oy as equal to the standard deviation of the
measurements in the k& channel or include the oy as
parameters to be inferred in the procedure we describe
below. Assuming a prior probability that only specifies
positive values for the ags) and E%, marginalizing Eq (11)
over the concentrations and o yields the posterior prob-

ability of E]Cc, and relative values of algs):

cahb’\’

(0 ()
1’ —ay ) I3
(-2t
) (D)
1' —az ) IS
(-t

(alzl(l) as ZI(’)> +
3 n n . 2
a1+a2+a3 ZZZ(I}:)—I;&]))

k=1 i=1 j=i+l
n—2
2

2
) .
2
) .
(12)

1
(a1 +a3 +a§)_2 ,

/ ((af + a3 +a3) azn):|

which is valid for the three cube experiments for each

sample (donor, acceptor, or construct). For the donor-
only sample, g; = a for the acceptor-only sample,

a; = a;‘ ), and for the sample with the donor-acceptor
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construct, the a; are replaced with
(D)
afD)(l Ep) + a(A) + ( ) ,(A)Ejir The posterior probabil-

ity, including all the calibration data together, is
obtained by multiplying the forms of Eq (12) for each of
the three 3-cube experiments.

For a given data set, we can infer Ef. and five of the

six al(s) constants relative to the remaining one, for

instance a(zA), which is set to unity. The numerator of
Eq (12) remains unaltered by such a rescaling of the
afs), and the alteration in the denominator is cancelled

by the Jacobian required for the change in variables.
One can use a Markov chain Monte Carlo method to
sample the al(S) and Efcr from P.,;,. Alternatively, one
can use a numerical solver to find the most probable
values by solving for the roots of the system of equa-
tions consisting of the derivatives of Eq (12) with
respect to each of the six variables. Using this relative
calibration procedure, the final K,; values obtained
would relate to the true K; by the scaling factor, for
instance agA).

Data simulation

We designed our simulated data to mimic the key fea-
tures of experimental data, which could come from var-
ious sources, such as fluorescence reader measurements
of solutions of purified proteins or images of cells from
fluorescence microscopy that have been processed and
quantified. To simulate data, we wrote a function in
Matlab (The Mathworks, Natick, MA) that takes as
input Eg, Kz Ag, Do, 1, al(S), and r where Ao, Dy are vec-
tors of length m (representing m cells or regions within
cells), n is the number of measurements made on each
cell or vesicle, and r is the strength of measurement
noise. The function outputs a set of simulated three-
cube FRET data from m samples with n measurements
per sample.

For each pair of concentrations, [Ay] and [Dy], we cal-
culate [D], [A], and [DA] using Eq (5). Next, we calcu-
late the simulated experimental intensities I, 14, and I
using Eq (1). Finally, we simulate measurement noise by
adding Gaussian random numbers to the data. The vari-
able r is a scalar between 0 and 1 that refers to the
strength of the measurement noise relative to the mean
of the observed signal. Noise with » = 10% would have
Gaussian measurement noise with standard deviation
that is 10% of the mean signal observed in each channel.

In our examples, we use Ej = 0.4 and Kz = 1 uM.
Unless otherwise indicated, we simulate ten measure-
ments per cell per channel and use the following set of

al(s) values, which were chosen to represent a donor-
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acceptor pair with considerable spectral cross-talk and
bleed-through:

a” =0.800, 4 =0.020, ™ =0.008,
a” =0.100, 4™ =1.000, ‘DA) - 0.100,
(D) - 0.170, (A) = 0.200, (D“) - 0.240.

The constants corresponding to the donor, acceptor,

and complex fluorescing in their respective channels

(a(D ), agA), and agDA)) are assigned the largest values. As
donors and acceptors are often not equally bright, we

set a(lD) < agA). In the FRET channel, the constants cor-
responding to bleed-through from donors (agD)) and

cross-talk from acceptors (agA)) have been set to
approximately 20% of the constants for donor and
acceptor in their respective channels (a(lD) and agA))
because spectral overlap contributes significantly in the
FRET channel. In the acceptor channel, smaller values
are assigned to a(D) and a(zDA) to describe the donor
undergoing cross-talk and, subsequently, either bleed-
through (agD)) or FRET (agDA)) in the acceptor channel.
It is unlikely that acceptors would emit photons detect-
able in the donor channel, so the constants correspond-
ing to that process, a(lA) and agDA), are very small, but
they are non-zero to show that any measurable spectral
contamination can be included.

Incorporating prior information

The Bayesian framework makes it possible to incorpo-
rate prior information about any of the parameters,
including uncertainty in al(s). As an example, we include
prior knowledge about Ej (see the Results). Such data
could be collected in separate experiments under slightly
different experimental conditions and in the presence of
measurement noise. We define the prior probability of
Es by a Gaussian distribution with mean at the mea-
sured value Eﬁ and variance og, which reflects the confi-
dence in the measurement:

—(Ef — Eﬁ)z} .

P(Ep) =  exp { 22 (13)

E

Markov chain Monte Carlo (MCMC) estimation

To sample K; and Ej; from the posterior probability dis-
tribution, we use a biased random walk. Although a
simpler approach would be sufficient to explore two
dimensions, we use this method because it will allow us
to efficiently extend our search to sample other,
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additional parameters we may wish to infer, such as the
values of al(s),

We use the Metropolis-Hastings algorithm [32,33]. It
begins at a random location in parameter space and
takes random steps, moving in up to 3 dimensions at a
time with proposed steps drawn from a distribution
that is symmetric about the current location. Proposals
that increase the posterior probability are always
accepted; those that decrease it are accepted with

P(x)
P(d—1)
ability of the proposed step and P (¥'™') is the posterior
probability of the current location. The walk is run for
a sufficiently long time (about 10,000 steps) to gener-
ate independent samples from the posterior distribu-
tion and the step size chosen to maintain an
acceptance rate of 40 - 60% [28].

Once the walk has converged with the energy fluctuat-
ing around a minimum value, we record the steps taken
and use the histogram of these sampled values as our
estimate of the posterior probability distribution. From
this estimated distribution, we obtain the mean and
standard deviation of each parameter being inferred.
The algorithm is summarized below.

probability , where P («/) is the posterior prob-

Marginalization of Dy and A,

We have defined the likelihood in Eq 7 and assume that
the measurement noise in each channel is independent.
Because we have a Gaussian model, the values of the
measurement noise parameters, 0p, 04 and o , that
maximise the posterior probability are approximately
equivalent to the observed variances of the data from
the donor, acceptor, and FRET channels, respectively
[28]. However, it would also be possible to fit o3, o7
and o directly, along with K, and Ej.

Although K, E5, Dy and A, are important parameters,
we cannot measure them directly. For our purposes, we
are interested in the values of K; and perhaps Ej, but
not the values of D, and A,. Rather than fit Dy and A,
we marginalize or integrate them out:

P(data|Kj, Ef,)

= /dDOdAOP(data, Do, A()|Kd, Eﬁ«)
(14)
= /dDodAoP(data|Kd,Efr,DO,AO)

xP(Do, Ao).

To indicate that we have no knowledge about the
values of Dy and Ay, we set the prior, P (D, Ap), to a
constant for positive Dy and Ag (and 0 otherwise).
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As a result,

P(data|Ky, Ef)

15
O(/dDodAo P(datale,Efr,Do,Ao). ( )

Because this expression is difficult to integrate analyti-
cally, we consider the ‘energy’, E = - log(P(data|K,, Eg,
Dy, Ay)), and approximate E with a two-dimensional
Taylor expansion about {Df, Aj}, where {D§, A§} mini-
mizes E (and thus maximizes the likelihood). Ignoring
terms above second order,

E ~ E(D}, A%)+

T
1 (D, — Dj « ey (Do—Dg\  (16)
2<A0_A,6> VVEWD;45) (g0 — a2 )

where VVE is the Hessian, or matrix of second-deriva-
tives of E with respect to Dy and A,.
Therefore,

P(data|Ky, Ef, Do, Ag)

1 (/Dy—D:\"
~ _E(D, AY) — 0
eXp[ (P 40) 2<A0—A3)

* * DO _DS
x VVE(D ’A°)<A0—A3 .

(17)

This approximation of the likelihood results in a
Gaussian integrand, which we can then integrate analyti-
cally [34]. Note that we do not use the limits of integra-
tion (0, =) which would be appropriate for non-negative
concentration values. We instead use the limits (- oo, )
to make the integral simple. It is a valid approximation
provided that Dj and A§ are sufficiently large and it
consistently yields appropriate results in practice.

In summary,

P(data|Kg4, Ef)
= / dAodDO P(datale, Efrr DOIAO)
. ep(~E(Dj, 43))
VIH|

where |H| is the determinant of the Hessian,
VVE(Dg, Aj). Although K,; and Ej; do not appear expli-
citly in the final form of Eq (18), both E(D§, A§) and H
depend on K,; and Ej.

(18)

Algorithm summary

Our algorithm for sampling from the posterior probabil-
ity distribution of (K Eg) with a prior probability distri-
bution for Ej consists of the following steps:
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1. Perform calibration to obtain values (absolute or
relative) for the ags) constants.
2. Define prior probability distributions for para-
meters to be inferred based on initial information
that is known, if any.
3. Run Markov chain Monte Carlo algorithm:
Choose initial step (K}, E}r) and compute the posterior
probability, P1 = P(K L E}r), as outlined in (b) below.
Forj =2 ton,
(a) Choose proposal step (Kfi, E}r)
(b) Compute the
P =P(K), E, .), for that step:
i. Find {D§, Aj}, the values of {Dy, Ao} that
minimise the energy of the posterior prob-
ability using nonlinear optimisation (the
Nelder-Mead simplex algorithm implemented
in Matlab’s fminsearch function (The Math-
works, Natick, MA)).
ii. Compute VVE(D§, Af) using analytical
expressions for the second derivatives of E
computed in Mathematica (Wolfram Research,
Champaign, IL) and exported to Matlab.
iii. Using Eq (18), compute the likelihood,

i gl
P(data| K, E.).

posterior probability,

iv. Using Eq (13), compute the prior, P(Ej[r).
v. Compute the posterior probability distribu-
tion, P;, which is the likelihood times the
prior probability.
(c) Check whether to accept the move to
(K, E}) :
o If P; >P; 4, accept.
PA
+ Otherwise, accept with probability p !
i—1
Steps (a)-(c) are repeated until j = n. After an initial
burn-in period where the energy reaches a minimum
and the walk achieves a stationary distribution,
record samples of K; and Ej.
4. Repeat step 3, varying initial (K, E). To ensure
convergence, the stationary distributions of all walks
should overlap [28].

Availability
We have made our data simulation and analysis software
available at http://swainlab.bio.ed.ac.uk/software/FRET.
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