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A solvable model for the diffusion and reaction
of neurotransmitters in a synaptic junction
Jorge L Barreda, Huan-Xiang Zhou*

Abstract

Background: The diffusion and reaction of the transmitter acetylcholine in neuromuscular junctions and the
diffusion and binding of Ca2+ in the dyadic clefts of ventricular myocytes have been extensively modeled by
Monte Carlo simulations and by finite-difference and finite-element solutions. However, an analytical solution that
can serve as a benchmark for testing these numerical methods has been lacking.

Result: Here we present an analytical solution to a model for the diffusion and reaction of acetylcholine in a
neuromuscular junction and for the diffusion and binding of Ca2+ in a dyadic cleft. Our model is similar to those
previously solved numerically and our results are also qualitatively similar.

Conclusion: The analytical solution provides a unique benchmark for testing numerical methods and potentially
provides a new avenue for modeling biochemical transport.

1. Background
In intercellular and intracellular spaces, passive transport
of biomolecules is a common phenomenon. Because
such processes are difficult to probe directly by experi-
ments, numerical modeling is increasingly used to gain
insight. Two processes that have been extensively mod-
eled are the diffusion and reaction of the transmitter
acetylcholine in a neuromuscular junction [1-6] and the
diffusion and binding of Ca2+ in the dyadic cleft of a ven-
tricular myocyte [7,8]. In contrast to previous numerical
approaches, here we present an analytical solution of a
model for the diffusion and reaction of acetylcholine in a
synaptic cleft (or Ca2+ in a dyadic cleft). Our model is
similar to those previously solved numerically; hence our
analytical solution potentially provides a new avenue for
modeling biochemical transport. More importantly, an
analytical solution provides a unique benchmark for test-
ing numerical methods. Such a solution has been lacking
up to now; the present work fills this gap.
Neuromuscular junction refers to the cleft between a

motor neuron and a muscle fiber. As illustrated in
Figure 1, the neuronal signal for muscle contraction is
mediated by acetylcholine. These neurotransmitter
molecules are initially inside vesicles located in the pre-

synaptic axon terminal. When an action potential
reaches the axon terminal, the vesicles release acetylcho-
line molecules into the synaptic cleft. These molecules
then diffuse toward the post-synaptic membrane and
bind to acetylcholine receptors in the membrane. Acet-
ylcholine binding activates these ligand-gated ion chan-
nels, allowing Na+ to flow in and generating an action
potential along the muscle fiber. Finally excess acetyl-
choline molecules around the post-synaptic membrane
are broken down by acetylcholinesterase to prevent con-
tinued activation of acetylcholine receptors.
A related system is a dyadic cleft, which spans the gap

between the cell membrane in a transverse tubule and
the membrane of a sarcoplasmic reticulum. As Figure 2
illustrates, Ca2+ can enter the cell through L-type Ca2+

channels on the cell membrane in response to the arri-
val of an action potential. The ions then diffuse to reach
and activate ryaonodine receptors in the membrane of
the sarcoplasmic reticulum. The activated ryaonodine
receptors release Ca2+ from the sarcoplasmic reticulum,
which ultimately lead to muscle contraction.
Here we propose a simple but not unrealistic model for

the diffusion and reaction of acetylcholine in a neuromus-
cular junction. The model also applies to the diffusion and
binding of Ca2+ in a dyadic cleft. We are able to find an
analytical solution for this model. For convenience we
describe our model in the language of neuromuscular
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junction. As shown in Figure 3, we model the synaptic
cleft as the space between two infinite, parallel planar
membranes. In the pre-synaptic membrane, there is a peri-
odic array of circular openings, via which acetylcholine
molecules enter the cleft. In the post-synaptic membrane,
there is a periodic array of circular disks, where the acetyl-
choline molecules are absorbed. The quantity of interest is
the total flux, J(t), at time t of acetylcholine molecules
across the post-synaptic membrane. This model allows us
to use periodic boundary conditions in the transverse
direction. Our results are qualitatively similar to those

obtained previously by numerical solutions [1-7]. More
realistic ingredients can be added to our model and still
permit analytical solutions.

2. Methods
We set up a coordinate system such that the x and y
axes are parallel to the pre- and post-synaptic mem-
branes. The synaptic junction has depth Lz. The junc-
tion is periodic in the x and y directions, with
periodicities of Lx and Ly, respectively. In each “unit
cell”, a synaptic vesicle bursts at time t = 0, releasing

Figure 1 Illustration of a neuromuscular junction. Presented are the key players in the diffusion and reaction of the neurotransmitter,
acetylcholine (ACh).

Figure 2 Illustration of a dyadic cleft. Presented are the key players in the diffusion and binding of Ca2+.
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the neurotransmitters into the cleft. We model the
release of the neurotransmitters as a transient flux, u(t),
that is confined to a circular opening with radius R. We
place the synaptic vesicle at the center of the pre-synap-
tic face of the unit cell. After diffusing to the post-
synaptic membrane, neurotransmitters are absorbed by
a circular disk in each unit cell, with radius a. We place
this “sink” also at the center of the post-synaptic face of
the unit cell. The exact shapes and locations of the pre-
synaptic opening and the post-synaptic sink are not
essential for the analytical solution of our model. The
quantity of interest is the total flux, J(t), through the
post-synaptic face of each unit cell.
We place the origin of the Cartesian coordinate sys-

tem at the center of the pre-synaptic face, with the z
axis pointing toward the post-synaptic face. The concen-
tration of neurotransmitters at position r and at time t
is C(r, t). Within the synaptic junction, it is governed by
the diffusion equation,
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where r = (x2 + y2)1/2 is the distance to the z axis.
The boundary condition at z = Lz is
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We solve the problem in Lapace space. For a function
f(t) of t, we denote the Laplace transform as
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0

. The Laplace transform of Eq. (1),

using the initial condition of Eq. (2), is
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The solution appropriate for the periodic boundary
conditions in the x and y directions has the form
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The coefficients alm(s) and blm(s) are to be determined
from boundary conditions.
To make use of the boundary condition of Eq. (3), we

need the 2-dimensional cosine transform of a function in
x and y that has value 1 when r < R and value 0 when
r > R. The coefficient of the cos(2lπ/Lx)cos(2mπ/Ly) term
is

q
L L

dxdy l x L m y Llm
l m

x y
R
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4

2 2
 

 
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cos( / )cos( / ) (8)

where ε0 = 1/2 and εl = 1 for l > 0. For later reference,
we note that the function having value 1 when r < a

Figure 3 Our model for both a neuromuscular junction and a dyadic cleft. Panel A: The pre-cleft membrane (top) contains a periodic array
of disks for the influx of ligands; the post-cleft membrane (bottom) contains a periodic array of absorbing disks representing receptors. Panel B:
The dimensions of a unit cell.
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and value 0 when r > a has the following coefficients in
its 2-dimensional cosine transform:

p
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dxdy l x L m y Llm
l m
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 
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Applying the boundary condition of Eq. (3), we find

D s s s u s qlm lm lm lm  ( ) ( ) ( ) ( )^   (10)

For the boundary condition of Eq. (4) at z = Lz, we
use the constant-flux approximation [9]:
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where the quantity Q(s) is to be determined by the
condition
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Equation (11) leads to
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With Eqs. (10) and (13), we solve for coefficients alm

(s) and blm(s). The results are
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Inserting Eq. (6) in Eq. (12) and using Eqs. (14) and
(9), we find Q(s) as
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Finally the total flux through the sink on the post-
synaptic face is

ˆ( ) ( )J s a Q s  2 (16)

The flux accumulated over all times,

I dtJ t


 ( )

0

(17a)

is of interest. In our model,

I J R u ˆ( ) ˆ( )0 02 (17b)

which is independent of a. Equation (17b) is simply a
consequence of ligand conservation, i.e., the total num-
ber of ligands released from the synaptic vesicle is the
same as the total number of ligands absorbed by the
receptors.
The analytical solution derived above can be imple-

mented on any function u(t) modeling neurotransmitter
release from the synaptic vesicle. We focused on an
exponentially decaying function:

u t e t t( ) /  0 (18a)

Its Laplace transform is
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Our model then contains two parameters related to
time: D and t0. For two sets of these parameters, e.g., D1

and t01 in one and D2 and t02 in the other, it can be
shown that the corresponding response functions satisfy

J D t J D t D t D t1 2 2 1 1 01 2 02( ) ( ) when (19)

We now briefly describe the details of our implemen-
tation of the analytical solution. To calculate the qlm
and plm coefficients of Eqs. (8) and (9), we first carried
out the integration over y analytically. The remaining
integration over x was done numerically using the
Gauss-Legendre quadrature with two points. The sum-
mations over l and m in Eq. (15) were truncated at l =

m = 40. The Laplace transform of ˆ( )J s was inverted by

the Stehfest algorithm [10]. A Fortran90 code for the
implementation is available upon request.

3. Results
We now present some illustrative results. The para-
meters of our model are as follows: Lx = Ly = 500 nm;
Lz = 50 nm; R = 20 nm; a varied from 2.5 to 40 nm; t0
varied from 1 to 10 ms; and D varied in (0.4-4) × 105

nm2/ms.
Our single absorbing disk is used to model ligand

binding to multiple receptors. Increasing a thus mimics
an increasing number, Nrec, of receptors per unit cell.
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We expect a to increase linearly with increasing Nrec

when Nrec is small; the increase in a then slows down at
higher Nrec (see Discussion). Figure 4 displays the
dependence of the response function J(t) on a (and
hence Nrec). As a (i.e., Nrec) increases, J(t) more and
more quickly reaches a higher and higher maximum
and decays faster and faster. This is the expected beha-
vior. Moreover, according to Eqs. (17b) and (18b), the
areas under the curves for different a values are
all equal to πR2t0. Note also that all our J(t) curves
have the familiar shape seen in previously numerical
studies [1-7].
Figure 5 shows the change in the response function

when the speed at which the neurotransmitters are
released into the synaptic cleft is varied. To make a fair
comparison, J(t) is scaled by t0 so that, effectively, the
total number of neurotransmitters entering the synaptic
cleft is fixed. It is clear that, as t0 increases (i.e., as the
speed of neurotransmitter release decreases), the
response function rises and decays more slowly. This
behavior has previously been specifically modeled by
Stiles et al. [1].
There is some uncertainty on the diffusion constant of

acetylcholine in neuromuscular junctions. In previous
models [1-6], the value of D ranged from (0.25-6) × 105

nm2/ms. In Figure 6 we display the change in the
response function when D is varied from (0.4-4) × 105

nm2/ms. As expected, when neurotransmitter diffusion
slows down, the response function is also delayed. In
our model, decreasing D has the same effect on the
response function as increasing t0 [see Eq. (19)].

4. Discussion and Conclusion
We have presented an analytical solution to a model
for the diffusion and reaction of acetylcholine in a

neuromuscular junction. The model also applies to the
diffusion and binding of Ca2+ in a dyadic cleft. Our
results are qualitatively similar to those obtained pre-
viously from models solved numerically [1-7].
Perhaps the greatest value of our analytical solution is

that it provides a benchmark for testing numerical meth-
ods. Diffusion and reaction of ligands in intercellular and
intracellular spaces have been modeled either on a particle
description or a concentration description. The former
type of models have been solved by Monte Carlo simula-
tions [1,7], while the latter type of models have been
solved by either finite-difference [2,6] or finite-element
[3-5] methods. The two types of models have been shown
to give equivalent results [8]. The level of realism of our
model approaches those of the models solved numerically;

Figure 4 Effect of the size of the absorbing disk on the
response function. The values of a in nm are shown in the figure.
For all curves, t0 = 1 ms and D = 105 nm2/ms.

Figure 5 Effect of the speed of ligand release on the response
function. Scaling of J(t) by t0 is to ensure that the same number
of neurotransmitters is released for all the curves with different
t0 values, which are shown in the figure in ms. a = 10 nm and
D = 2 × 105 nm2/ms.

Figure 6 Effect of the ligand diffusion constant on the
response function. The values of D in 105 nm2/ms are shown in
the figure. For all curves, a = 10 nm and t0 = 1 ms.
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hence our analytical solution will be able to serve as a
good benchmark for the numerical methods.
Our model has room for increasing the level of rea-

lism and still allows for analytical solution. For example,
we modeled ligand binding to receptors as absorbing.
The binding can be modeled as partially absorbing if
binding does not occur at every ligand-receptor encoun-
ter. The partial absorption condition takes the form

D
C t

z
C t a




 ( , )
( , )

r
r when (20)

where the reactivity � controls the degree of partial
absorption. When � = 0, the region r < a becomes
reflecting and binding cannot occur. When � ® ∞, the
region r < a becomes fully absorbing and Eq. (20)
reduces to the absorbing condition of Eq. (4a). Note
that the bimolecular rate constant k for binding to the
partially absorbing disk is given by [11]

1 1
4

1
2k Da a

 


(21)

One can thus parameterize a and � by matching k
with experimental data for the ligand-receptor binding
rate constant.
Another simplification of our model is that a single

absorbing disk is used to represent the receptors. We
accounted for the presence of multiple receptors per
unit cell by increasing the radius a of this disk. One can
identify a by requiring that the bimolecular rate con-
stant k calculated for the single absorbing disk is the
same as that for the Nrec receptors. For the single
absorbing disk we have k = 4Da [see Eq. (21)]. If each
of the Nrec receptors is modeled as an absorbing disk
with a small radius a0, then k ≈ 4NrecDa0 when Nrec is
small [12]. Therefore a ≈ Nreca0 for small Nrec. As Nrec

increases, the rate constant k for the multiple receptors
and correspondingly the radius a of the equivalent disk
also increase, but the increase slows down as Nrec

becomes large [12,13]. Instead of using a single equiva-
lent absorbing disk, analytical solution is actually still
permitted when multiple receptors, each represented by
a (partially) absorbing small disk, are present at arbitrary
positions on the post-synaptic face. An alternative way
to model the presence of multiple receptors is to assume
that the whole post-synaptic face is partially absorbing,
with an reactivity given by [12,13]

K rec

rec




N k

S f
0

1( )
(22)

where S = LxLy is the area of the post-synaptic face,
frec = Nrecπa0

2/S is the fraction of the post-synaptic face
that is covered by the receptors, and k0 is given by

1 1
4

1

10 0 0
2k Da a f

 
 ( )rec

(23)

We have modeled ligand-receptor binding as irreversi-
ble. This is somewhat justified for modeling the neuro-
muscular junction, in which acetylcholinesterase can
break down acetylcholine molecules newly released from
the receptors. No such mechanism is present for Ca2+

in the dyadic cleft. Reversible binding can be treated by
appropriate boundary conditions [14] on the post-synap-
tic face. Another important detail is that both acetylcho-
line and ryanodine receptors have multiple binding sites
for their ligands so that there are multiple ligand-occu-
pation states for the receptors. Again, these can be trea-
ted by appropriate boundary conditions.
The geometries of some of the models previously

solved numerically are more sophisticated than that of
our model. In particular, secondary folds of the neuro-
muscular junction has been included in some of the
previous models [1,3-5]. A formalism for treating
ligand binding to a site buried in a narrow tunnel has
been developed [15] and may be adopted for treating
the narrow secondary folds in the neuromuscular junc-
tion. However, analytical solution requires idealized
geometries; the kind of realistic geometries drawn
from electron microscopy that can be handled by
a finite-element method [4,5] is beyond the reach of
analytical solution. Nevertheless, with all the new
ingredients outlined above, analytical solution will
potentially provide a new avenue for modeling bio-
chemical transport.
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