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Abstract

Background: The diffusion-limited reaction rate of a uniform spherical reactant is generalized to anisotropic reactivity.
Previous work has shown that the protein model of a uniform sphere is unsatisfactory in many cases. Competition of
ligands binding to two active sites, on a spherical enzyme or cell is studied analytically.

Results: The reaction rate constant is given for two sites at opposite ends of the species of interest. This is compared
with twice the reaction rate for a single site. It is found that the competition between sites lowers the reaction rate
over what is expected for two sites individually. Competition between sites does not show up, until the site half angle
is greater than 30 degrees.

Conclusions: Competition between sites is negligible until the site size becomes large. The competitive effect grows
as theta becomes large. The maximum effect is given for theta = pi/2.
Background
The purpose of this article is to generalize the Smolu-
chowski [1] calculation of the steady state bimolecular
rate constant, 4πDR, to anisotropic reactivity. This was
necessary because previous work [2,3], has shown that
diffusion-controlled protein-ligand binding is not mod-
eled successfully by a uniformly reactive protein for
some cases. As a consequence of this, more realistic
models of proteins were created. Previously this was
done by having one reactive site on a spherical molecule
or cell [4-6]. Berg and Purcell considered many sites on
a sphere [7]. This paper considers two axially symmetric
sites on opposite ends of a sphere reacting with small
molecules. See Figure 1. This might be used to model a
protein-ligand reaction: such as the diffusion-controlled
reaction of acetylcholine with the active sites of tetra-
meric mouse acetylcholinesterase [8].

Methods
We want to solve

∂2c r; θð Þ=∂r2 þ 2=rð Þ∂c r; θð Þ=∂r
þ 1=r2 1=sinθð Þ∂=∂θ sinθ∂c r; θð Þ=∂θð Þ
¼ 0 ð1Þ
Correspondence: dshoup2120@comcast.net
Mathematics and Science Department, Lincoln Land Community College,
5250 Shepherd Rd, P.O. Box 19256, Springfield, IL 62794, USA

© 2014 Shoup; licensee BioMed Central Ltd. T
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
Dedication waiver (http://creativecommons.or
unless otherwise stated.
where c(r, θ) gives the ligand concentration. Figure 1
shows that there is symmetry between the two active
sites. As a consequence of this, the net flux normal to
the equatorial plane vanishes for all r. This reduces the
two site problem to a one site problem, where now θ
varies from 0 to π/2. Mathematically this says

∂c r; θð Þ=∂θ ¼ 0 θ ¼ π=2 ð2Þ

We also have

c� ¼ limr→∞c r; θð Þ ð3Þ

where c˳ is the bulk concentration of ligand. The reactive
boundary conditions are given by

c R; θð Þ ¼ 0 0≤θ≤θ∘ ð4Þ

and

∂c r; θð Þ=∂rjr¼R ¼ 0 θ�≤θ≤π=2

ð5Þ

As done previously [6,9], equation (4) is replaced by
the constant flux boundary condition
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Figure 1 A non-reactive sphere with two reactive spherical caps
of half angle θ° at each end.
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∂c r; θð Þ=∂rjr¼R ¼ Q 0≤θ≤θ∘ ð6Þ
where Q is evaluated, by requiring the average concen-
tration of ligand to vanish over the active site. (see ref. 6,
equation 8, κ→∞)

Z θ˳

0
c R; θð Þsinθdθ ¼ 0 ð7Þ

The diffusion limited rate constant for the two site
problem is
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Figure 2 Plot showing the variation of the diffusion-limited rate cons
kDC ¼ 2πR2D
c∘

Z θ∘

0

∂c
∂r r¼R sinθdθj ð8Þ

Where D is the diffusion coefficient of the ligands and R
is the radius of the sphere. The accuracy of the constant
flux boundary condition may be seen, for small θ˳ (e.g.
small binding sites), by considering a reactive disk in an insu-
lating plane. For this problem, the exact solution is known
[6]. It is kDC = 4 Da, where a = the disk radius. The constant
flux method yields [6] kDC = 3.7 Da. Thus the constant flux
boundary condition is accurate for small reactive sites.
The solution of equation (1) is given by

c r; θð Þ ¼ αþ
X∞

m
am f m rð ÞPm cosθð Þ ð9Þ

where the Pm (x) are Legendre polynomials of order m.
Application of the boundary condition given by equation
(2) yields

c r; θð Þ ¼ αþ
X∞

m
α2mf 2m rð ÞP2m cosθð Þ ð10Þ

Equation (3) is satisfied with α = c˳ and with the radial
functions

f 2m rð Þ ¼ 1=r2mþ1 ð11Þ

The coefficients a2m in equation (10) are found using
equations (5) and (6). Details, parallel a previous deriv-
ation [6].
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tant with half-angle theta for 3 different cases.
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Results and discussion
In this section we present the results and discuss how
the method represents a step forward in the field of
diffusion-controlled kinetics and biophysics in general.
The results are given by the solution of the model in

the preceding section, and by comparing it to twice the
rate limited constant for the one site problem [6]. The
difference between the two problems, gives a measure
of competition between the two sites for reaction with
ligands.
The diffusion limited rate constant for the two site

problem is

k2 ¼ kDC=4πDR ð12Þ

where 4πDR is the rate constant for a uniformly reacting
sphere. The reciprocal of our rate constant is

1=k2 ¼ 1þ 1

4 1− cos θ∘
� �2

X∞

m¼1

P2m−1 cos θ∘
� �

−P2mþ1 cos θ∘
� �� �2

= mþ 1
2

� �
2mþ 1

2

� ��

ð13Þ

The reciprocal of the rate constant for one site is given
by

1=k1 ¼ 1þ 1

2 1− cos θ∘
� �2

X∞

m¼1

Pm−1 cos θ∘
� �

−Pmþ1 cos θ∘
� �� �2

= mþ 1
2

� �
mþ 1Þð

�

ð14Þ

Figure 2 shows plots of k2 (θ˳) (the rate constant for 2
sites), twok1 (θ˳) (twice the rate constant for 1 site) and
k1 (θ˳) (the rate constant for one site [6]) versus θ°. For
small θ˳, the two site rate constant and 2 × the single site
rate constant are in agreement with each other, as would
be expected(both behaving as two active sites on a large
sphere). As θ˳ grows above 30 degrees, the curves grow
apart. The two site curve, being less than 2 × the one site
curve.
The difference between the curves is a measure of the

competition between the two sites. The competition effect
does not show up till around 30 degrees. For θ∘ ¼ π

2 ;

k2 ¼ 1, which is the exact result. Thus, the constant flux
boundary condition, is good for large θ˳.
This paper represents progress in the field, by present-

ing a new model for the interpretation of experimental
data. This is for macromolecule-ligand binding reactions
that fall in the diffusion-controlled regime. Previously,
only one site models were available for modeling pro-
teins. Proteins with multiple binding sites can now be
studied.
Conclusions
The analytical expression for the diffusion-limited rate
constant to two active sites on a sphere has been given.
The result was used to study the competitive effects
between the two sites. The effect doesn’t show up until
the site half-angles is greater than 30 degrees. The
competitive effect grows until its maximum value is
reached at θ˳ = π/2.
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