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Abstract

drift would decrease the image resolution.

single molecular images.

Background: The recent developments of far-field optical microscopy (single molecule imaging techniques) have
overcome the diffraction barrier of light and improve image resolution by a factor of ten compared with conventional
light microscopy. These techniques utilize the stochastic switching of probe molecules to overcome the diffraction
limit and determine the precise localizations of molecules, which often requires a long image acquisition time.
However, long acquisition times increase the risk of sample drift. In the case of high resolution microscopy, sample

Results: In this paper, we propose a novel metric based on the distance between molecules to solve the drift
correction. The proposed metric directly uses the position information of molecules to estimate the frame drift. We
also designed an algorithm to implement the metric for the general application of drift correction. There are two
advantages of our method: First, because our method does not require space binning of positions of molecules but
directly operates on the positions, it is more natural for single molecule imaging techniques. Second, our method can
estimate drift with a small number of positions in each temporal bin, which may extend its potential application.

Conclusions: The effectiveness of our method has been demonstrated by both simulated data and experiments on
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Background

Far-field optical microscopy has played an important role
in the biological sciences. However, the imaging capacity
of a conventional light microscope is fundamentally lim-
ited by the wavelength of the light. Recent developments
in optical microscopy, such as fluorescence photoacti-
vation localization microscopy(FPALM/PALM) [1] and
stochastic optical reconstruction microscopy(STORM)
[2,3], have overcome the diffraction limit [4] and achieved
resolution values down to 20 nm, a factor of ten lower
than the resolution of conventional light microscopy.
These techniques exploit the stochastic photoswitching of

*Correspondence: renfei@ict.ac.cn; zhangfa@ict.ac.cn

L Key Lab of Intelligent Information Processing and Advanced Computing
Research Lab, Institute of Computing Technology, Chinese Academy of
Sciences, 100190 Beijing, China

Full list of author information is available at the end of the article

( ) BiolMed Central

fluorescent probe molecules and carefully choose imaging
parameters to guarantee that no molecules closer together
than the point spread function (PSF) width would emit
signal at the same time. Because these techniques should
readout a sequence of camera frames in a diffraction lim-
ited situation for the reconstruction of a super-resolution
image, it is common that the image acquisition will take
a long time. Typically, 1,000-100,000 individual camera
frames [1,3,5,6] are needed, with exposure times of 1-100
ms per frame; this translates to several minutes to hours
in total.

Long acquisition times increase the risk of sample drift
during imaging [7]. Sample drift on the nanometer scale is
hard to avoid as it may be caused by a variety of reasons,
such as mechanical instability of instrument and vibra-
tion. Without correction, the lateral drift will smear the
image and degenerate the resolution. The drift correction
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problem is a special case of image registration that has
been discussed for decades in medical image process-
ing and leads into a variety of solutions. Recently, several
methods have been proposed to solve the drift correction
problem in the field of single molecule imaging. Fidu-
cial markers, typically gold nanoparticles or fluorescent
beads, can be incorporated into the sample. Because the
brightness of fiducial markers has a high contrast to that
of probe molecules [1,3] and is stable during measure-
ment, the positions of markers can be easily tracked and
their trajectory can be used to correct the drift, which
makes the method quite reliable. However, the fiducial
marker-based method needs beads introduced into the
sample and limits our observation area. Fiducial mark-
ers also may interfere with the sample and degenerate
the localization precision of the nearby probe molecules
[8]. To overcome the limitation of this marker-based
method, cross-correlation is an alternative option. Cross-
correlation utilizes the biological structure itself, which
is stationary during the measurement, to estimate the
drift. Though cross-correlation avoids the problems of
introducing fiducial markers, there are also several short-
comings. Generally, the positions of molecules should
be spatially binned as a 2D histogram to carry out the
cross-correlation analysis [9,10]. The behavior of cross-
correlation is close relative to the localized fluorescent
position density of the 2D histogram. There are two
decisive factors: the parameters of spatial binning and
temporal binning. First, we should carefully choose the
spatial binning parameter. If the spatial binning is too
coarse, i.e., if the pixel width of the 2D histogram is too
wide, smaller features of the molecular distribution will
be lost. If the density of molecules in a pixel is too low,
the histogram will not represent the global distribution
of molecules, which may lead to the failure of the cross-
correlation analysis. Second, the choice of the temporal
binning parameter also determines the number of local-
ized positions in a temporal bin. Typically, the number of
positions in a temporal bin should be sufficient to give
a meaningful description of molecule distribution. How-
ever, for applications where there are a small number of
localized florescent events in each frame, the temporal
bins will be too large to ignore the drift within one inter-
val, which leads to an inaccurate estimation of the overall
drift.

In this paper, we propose a new metric based on the
distance between molecules to solve the drift correction.
The proposed metric directly uses the position infor-
mation of molecules to estimate the frame drift. Thus,
the introduction of fiducial markers and the problems
of binning the frames into 2D histogram are avoided.
Since the metric directly operates on the positions, it is
more natural and conceptually straight-forward for the
single molecule imaging techniques. Though the choice
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of parameters of temporal binning is still a problem in
our metric, by directly using the distance metric, just
a small amount of information on the stable molecules
can uncover the relationship between different frames.
Therefore, the proposed method could estimate the drift
with a small number of positions in each temporal bin,
which may extend the potential application scenarios of
our metric. We also designed an incremental algorithm
to implement the metric for the general application of
drift correction. Different experiments based on simu-
lated data and real data have been carried out and the
results demonstrate the effectiveness of our method.

Methods

The stochastic switching of probe molecules is the fun-
damental mechanism of single molecule imaging. The
switching on and switching off phenomenon of a single
molecule obeys a Poisson process in the temporal domain
[10]. Because the switching events of probes are asyn-
chronous, the observation (frame) at different time points
becomes a random sampling of the molecule distribution
in the structure. In addition, considering the difference
between the readout rate of microscopy and switching
rate of probe, a florescent event observed in a frame may
change or not be recorded in the next frame. Though the
molecule position can be determined by various methods
[11], the essence of these localization methods is fitting
the distribution of the measured photon spot to that of the
ideal point spread function (PSF) [12], which will unavoid-
ably introduce localization error. Therefore, it is difficult
to trace an identical molecule in different frames and we
will not make any assumption about the traceability of
probe molecules in our model.

The super-resolution image is reconstructed from the
molecule positions. The localization precision of probe
molecules has a great effect on the reconstruction quality.
There are three kinds of uncertainties in the localiza-
tion of probe molecules. The first uncertainty comes from
the localization technique itself. The fitting methods are
based on a probability model and certain assumption
about the ideal PSF, but the fundamental assumption may
not be completely consistent with the emitter properties
in each application. In addition, the observed photon dis-
tribution may be affected by background noise or mutual
interference of molecules, all of which affect the local-
ization accuracy. The second uncertainty comes from the
thermodynamic instability of probe molecules. The long
acquisition of single molecule imaging gives a molecule
enough chance to undergo random motion. The effect of
random motion is intrinsic and inevitable in the period of
measurement. The third uncertainty is the sample drift.
These drifts will degenerate a reconstruction image to a
great degree. Fortunately, they can be compensated by the
drift correction method.
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Imaging model

The super-resolution image is reconstructed from all the
molecule positions in the frames. Here, we introduce the
concept of ‘position set. A position set (denoted by @)
is the set of all the localized positions measured in a
time interval. If the experimental environment is ideal, @
will be a random sampling of the signals that depict the
biological structure. However, localization error, random
motion of the probe molecule and sample drift compli-
cate the situation. Thus, we define the measured molecule
position p by

I; = I_'}om + J’ﬁt + J’mn +D 1)

where por, is the corresponding position of probe
molecule measured in the ideal condition (a position of
oracle), qzﬁt is the calculation error of photon distribu-
tion fitting, ¢:mn is the uncertainty of random motion and
D is the sample drift. In general, the calculation error
obeys a Gaussian distribution, without considering the
model bias. The probable positions of a probe molecule
in random motion are also assumed to follow a Gaus-
sian distribution, according to the most recent study and
experiment by Nieuwenhuizen [13]. For convenience of
discussion, we ignore their difference in mechanism and
define them as a combination <Z>, ie. <Z> = qzﬁt + q?mn (<Z>
also obeys a Gaussian distribution). That is to say, if we
already know the ideal position poy, of a florescent event
and the drift D, the probability that a measured position p
corresponds to the ideal position is:

exp (_ lp — Pora I ) @)

Prob(p) =

2mwo? 202

where o is the standard deviation of q;

For a position set ® = {p;|j = 1,2,...M}, the signal
distribution of fluorescent probes can be described by the
following density function:

M
Y@ =) 8(x—p) (3)
i=1

where 8 (+) is the Dirac delta function. The Dirac delta
function can depict the signal distribution exactly, but
there comes a problem when processing molecule posi-
tion sets in which the sample drift has not been corrected.
The Dirac delta function can not be used to judge the
similarity between two position sets, because it does not
formulate the uncertainty in the measurement. Here, we
propose a novel metric to solve the problem. Our metric is
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based on the distance between molecules and can directly
measure the similarity of signals by molecule positions.

Let us consider the most simplified situation: a structure
consists of two points. Figure 1 illustrates such a struc-
ture and on each point there is a florescent probe. There
are three measured position sets obtained by observation
and marked on Figure 1(a) by blue, red, and green points.
All of the position sets have a measurable drift. The black
cross denotes the ideal position of probe. We find that
the observation data has deviated from the ideal position
set a lot. Obviously, these three position sets are simi-
lar to each other, but the simple overlapping of the three
position sets cannot depict the signal distribution success-
fully. In addition, such a data set cannot be corrected by
the cross-correlation of a 2D histogram, because there are
not enough positions. The measured signal is a random
sampling of the true structure. Because the structure is
only composed of two points, the drift can be corrected
by distance (Euclidean distance) comparison of the corre-
sponding position in each part. Figure 1(b) illustrates the
relative position of these three position sets corrected by
distance comparison.

As discussed above, the distance comparison is able to
correct the drift of a structure composed of two points,
but it does not work in more complex situation. How-
ever, we can extend the concept of distance comparison.
First of all, we should make two basic rules clear in single
molecule imaging techniques:

1. For different position sets that depict the identical
biological structure, the distribution of their superset
should be as sharp as possible.

2. For a given structure (distribution) that is depicted
by molecule positions, the more positions there are,
the better the signal strength output will be.

These rules are coincident with the criteria introduced
in the recent resolution estimation work [13] and are
also the guide line for drift correction. The distribution
of molecule positions should obey the signal distribu-
tion of the underlying biological structure. Because of the
measurement uncertainty, the molecule positions belong
to different position sets, which represents the identi-
cal structure, but with slight difference. Here, we pro-
pose a new criterion, called the Point value of Molecular
Constraint Field(PMCEF), to indicate the sparseness of
molecule positions around a spot. For a region centered
on position p, the function is given by:

E@)= Y FUN(lp—pll),j=12..M (4

region

Where || - || is the [2—norm and fa/ represents the point
located in the region. The certain form of the kernel func-
tion FUN(:) has not been given out here. FUN(:) should
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(a)

corresponding observations in (a).

(b)

Figure 1 lllustration of the measured position set and drift correction in a structure composed of two emitters. (a) Measured positions of a
probe. The black cross denotes the ideal position of the probe. The blue, red and green points denote three measured positions of the probe in
different times. (b) The corrected positions of the observed probe positions. The blue, red and green points denote the corrected positions of the

be a function symmetric about the y-axis and depends
on the real application. The summation of kernel func-
tion maps the distance between two points into a value
describing the sparseness. According to the discussion
of uncertainty of the image model, Gaussian function is
chosen as the kernel function. Therefore, the generalized
PMCEF of position p is defined as follows:

1 12 — pjl?
oo P (_ 2021 ®)

Where p; represents the probe molecules in region and
o restricts the effective width of kernel function. It is not
hard to extend the idea from a molecule position to a posi-
tion set. Assuming there are two position sets @4 and &,
the Molecular Constraint Field (MCF) of the given two

position sets is defined as:
ﬁ‘ _ —b‘ 2
exp (_ I5: — Bl ) ©

PMCF@) = )

region

202

M N 1
MCF(®4, Pp) =
enon=3.3 2

where p; € ®4,i=1,2,...Nand pj € ®p,j =1,2,... M.
MCEF is a metric based on the conception of position
sets and directly outputs the similarity of two signal dis-
tributions represented by the Dirac delta function. Note
that the properties of MCF are coincident with the above
basic rules. The conception of MCF is similar to cross-
correlation analysis and is connected with the concept
of the Parzen-Window Density Estimation [14,15]. How-
ever, MCF directly operates on the molecule positions
to judge the similarity of two signal distributions, which
is more conceptually straight-forward and easy to oper-

ate compared with the cross-correlation analysis of a 2D
histogram.

There are several properties of MCF:

1. Reciprocity: If p; contributes value to the PMCF of p;,
pj will contribute equal value to the PMCF of p;.

2. Additivity: Every molecule position contributes to
the PMCEF of a certain region. If there are several
difference regions, the molecule will have
contribution to each.

3. Regionally restraint: The output of the kernel
function of MCF declines to zero when the value of
the distance exceeds a threshold.

Drift correction
The super-resolution image is reconstructed from a series
of frames. For convenience in our later discussion, we
define the positions of all the frames, i.e., the positions
composing the super-resolution image, by @, and define
the positions of the ith frame by @;). Therefore, ®5;)
is a subset of @y, i.e., Vi, @) S Pyy. The position sets
of several successive frames can be combined (temporally
binned) into a union. If the frames are binned at an inter-
val of ¢, we defines the union set of the ith interval by @7 ;),
ie, 1) = Phgit—t+1) U Prriit—+2) U - - - U Phriiny-
Assuming there are two position sets @4 and @5 (p; €
@4,i = 1,2,...N and p; € ®p,j = 1,2,...M), the cost
function MCF(L) of drift correction is given by:

M N I
1 LG — s
MCE(L) = 33" 5 ——exp (_ I (plz)(ﬂp I ) o)
j=1 i=1

where L(-) is a transformation function, g is movable
and @4 is fixed. Our aim is to find an L(-) that maximizes
the MCEF. The choice of the shape of L(-) depends on the
method of image acquisition. In most applications, the
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drift is assumed to be linear [9,10], so we will make that
assumption (though affine projection may occur in some
cases). Therefore, in the following contents, the Eransfor—
mation is defined as linear, ie, L(p) = p + d, where
d = (a, B)7, « is the drift compensation of the x-axis and
B is the drift compensation of the y-axis.

As discussed in [10], there is a difficulty in choosing
the reference image when doing drift correction based
on the cross-correlation analysis of a 2D histogram. To
depress the deviation of the estimation error, we propose
an incremental registration algorithm based on the MCF
metric. Our method is summarized in Figure 2. Firstly,
the position sets of frames are binned at an interval of
t. Our algorithm takes {@r(;} and an empty reference
set @y as input. The reference position set Dy s ini-
tialized by @71y and the counter i is set to two. Then
position set @7 is selected to compare with @,,¢ and the
sample drift is estimated. The drift of @1(; will be com-
pensated and the positions of @7(; will be merged into
®,ef. Repeat the selection and drift compensation process
until all the subset are corrected. Finally, the reference
position set @, will be output as the data for the super-
resolution image reconstruction. Many techniques could
be utilized to solve the maximum problem, for exam-
ple, Grid Searching, Conjugate Gradient. We have imple-
mented the algorithm in C++, based on GNU Scientific
Library (GSL); it is freely available from the authors upon
request.

In the process of drift estimation between @7 and
@y, all the information from the previously corrected
position sets are used. Therefore, according to the study
of Geisler [10], the deviation of drift estimation error can
be controlled by this incremental strategy of our algo-
rithm. Two parameters, the o of MCF and the temporal
binning interval ¢, should be initialized. According to
the Nyquist sampling theorem, the value of o should be
more than double the standard deviation of the molecular
localization uncertainty. The choice of temporal binning
interval ¢ is less restricted than that in the method of
cross-correction analysis. In the following experiments,
we prove that our method can achieve high drift correc-
tion accuracy with very few molecule positions in each
d7(;), assuming the sampling has no bias.

Results

Simulated data

Three simulated data sets have been designed to eval-
uate the performance of our method, as showed in
Figure 3. The first structure, named ‘Ring, consists of
40,000 molecules randomly distributed on a ring structure
with a width of 200 nm. The molecules are divided into
T = 40 equal step length bins (i.e., there are 40 groups
of molecules and in each group there are 1000 molecules)
with drift imposed along the x-axis. The linear drift in
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Figure 2 Flowchart of the incremental drift correction algorithm.

time ¢,/ = 1,2,... T is illustrated in Figure 3(b) and the
structure after the drift is shown in Figure 3(a). The sec-
ond structure, named ‘Grid’, consists of 60,000 molecules
distributed on a grid structure, the thickness of the lines
of the grid is 120 nm. The molecules are divided into
T = 40 equal step length bins (i.e., there 40 groups of
molecules and in each group there are 1500 molecules)
with drift imposed along x-axis and y-axis. The drift of x-
axis and y-axis in time #;,j = 1,2,...T is illustrated in
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Figure 3 Simulated data with drift imposed on the data. (a) Super-resolution image of data set Ring, which is degenerated by the drift(10 nm
per pixel). (b) Blue solid points denote the exactly simulated values that are imposed on the Ring data set as drift; cyan cycles denote the estimated
drifts that are calculated from the degenerated data set by our algorithm. (c) Super-resolution image of data set Grid, which is degenerated by the
drift(10 nm per pixel). (d) Solid points denote the exactly simulated values that are imposed on the Grid data set as drift, where the blue one refers
to the drift along the x-axis and the red one refers to the drift along the y-axis; cycles denote the estimated drifts that are calculated from the
degenerated data set by our algorithm, where the cyan one refers to the drift along the x-axis and the pink one refers to the drift along the y-axis.
(e) Super-resolution image of data set Radio, which is degenerated by the drift(10 nm per pixel). (f) Solid points denote the exactly simulated values
that are imposed on the Radio data set as drift, where the blue one refers to the drift along x-axis and the red one refers to the drift along y-axis;
cycles denote the estimated drifts that are calculated from the degenerated data set by our algorithm, where the cyan one refers to the drift along
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— —
(b)Grid (c)Radio
Figure 4 Super-resolution images of drift corrected data (10 nm per pixel). (@) Super-resolution image of data set Ring which is recovered

from the data set illustrated in Figure 3(a). (b) Super-resolution image of data set Grid which is recovered from the data set illustrated in Figure 3(c).
(c) Super-resolution image of data set Radio which is recovered from the data set illustrated in Figure 3(e).

(a)Ring

Figure 3(d) and the structure after the drift is shown in
Figure 3(c). The third structure, named ‘Radio; consists of
60,000 molecules labeled on a structure composed of two
ring structures and several lines radiating from the cen-
ter, where the thickness of the ring structure is 120 nm
and the thickness of the line is 80 nm. The molecules are
divided into T = 40 equal step length bins (i.e., there
are 40 groups of molecules and in each group there are
1500 molecules) with drift imposed along x-axis and y-
axis. The drift of x-axis and y-axis in time ;,j = 1,2,... T
is illustrated in Figure 3(f) and the structure after drift is
shown in Figure 3(e).

Figure 4 demonstrates the molecule positions after drift
correction. The estimated drift of every data set is illus-
trated in Figure 3. It should be noted that the drifts
estimated by our algorithm almost coincide with the simu-
lated drifts. The effectiveness of drift compensation can be
evaluated by residuals, which are calculated as the differ-
ence between the drift estimated by our algorithm and the
drift simulated in the experiment. The means of residual
errors of Ring, Grid and Radio are 2.0 nm, 2.8 nm and
3.6 nm, respectively.

Quantitative analysis of the molecule positions is car-
ried out by Fourier ring correlation (FRC) [13] for the
three data sets, as illustrated in Figure 5. The resolution
in super-resolution microscopy depends on the localiza-
tion uncertainty, density of probe molecule positions and
the sample’s spatial structure. FRC is based on the homo-
geneity of the distribution of position sets and could give
out an estimation of resolution of the super-resolution
image. Figure 5(a),(b) and (c) illustrate the FRC curves
of the data sets Ring, Grid and Radio that are corrupted
by sample drift. Figure 5(d),(e) and (f) illustrate the FRC
curves of the data sets Ring, Grid and Radio that are cor-
rected by our method. Figure 5(g),(h) and (i) illustrate the
FRC curves of the data sets Ring, Grid and Radio that are
free from drift, i.e., the original data sets that have not
had drift imposed. For low spatial frequencies, the FRC
curve is close to unity; for high spatial frequencies, noise

dominates the data and the FRC decays to 0. The fixed
threshold for determining the resolution is set to 0.143,
where the value of the FRC curve announces the corre-
sponding resolution of the super-resolution image [13].
The steeper the FRC curve is, the lower the resolution
of the data. The FRC resolution of Ring corrected by our
method is 106.7 nm, while the FRC resolution of Ring after
drift is 890.0 nm. The FRC resolution of Grid corrected by
our method is 91.4 nm, while the FRC resolution of Grid
after drift is 744.0 nm. The FRC resolution of Radio cor-
rected by our method is 78.6 nm, while the FRC resolution
of Radio after drift is 524.9 nm. As a comparison, the FRC
resolutions of the original data sets that are free of sample
drift are 106.4 nm, 91.2 nm and 77.7 nm for Ring, Grid
and Radio, respectively. It should be noted that the FRC
curve of data sets restored by our method are very close
to the original data sets, which proves the effectiveness of
our method.

Because the drift correction based on MCF does not
need to bin the molecule positions into a 2D histogram,
our algorithm has the potential to estimate drift with
a very small number of positions in each temporal bin.
Figure 6 illustrates the results of an experiment based on
the data sets Grid and Radio, where all the conditions are
the same as the previous experiment except that there are
in total 6,000 molecule positions in every data set (150
positions for each bin). Figure 6(a) (g) illustrate the super-
resolution images of Grid and Radio, respectively, which
are free from drift. Figure 6(b) (h) illustrate the super-
resolution images of the data sets that are corrupted by
drift. 6(c) (i) illustrate the super-resolution images of the
data sets that are corrected by our method. Figure 6(d) (e)
(f) () (k) (1) are the corresponding FRC curves. It should
be noted that the super-resolution images of the corrected
data sets is very close to that of sets free of drift, and
their FRC curves are very similar. Here, the FRC resolu-
tion of Grid corrected by our method is 115.7 nm, while
the FRC resolution of Grid after drift is 717.9 nm. The
ERC resolution of Radio corrected by our method is 134.8
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nm, while the FRC resolution of Radio after drift is 553.2
nm. As a comparison, the FRC resolutions of the data
sets that are free of sample drift are 115.7 nm and 133.4
nm for Grid and Radio, respectively. The resolution of the
data corrected by our method is almost the same as the
drift free ones. To further explain the range of possible
applications, an experiment performed in a critical situa-
tion (in total 1,600 molecule positions in every data set,
i.e., 40 positions for each bin) has been illustrated in the
Appendix.

It is also known that the position localization precision
and molecule numbers per temporal bin affect the perfor-
mance of drift compensation [9]. Experiments in different
molecule numbers per temporal bin (denoted by #) and
localization precision (denoted by &) of data set Grid and
Radio were carried out to illustrate the impact. The mean
A, and the standard deviation o; of residual over the
T = 40 temporal intervals were calculated for each sim-
ulation. Figures 7 and 8 illustrate the curves of A; and
04 as a function of n and &. For both Figures 7 and 8,
sub-fig (a) (c) represent the same A, and sub-fig (b) (d)
represent the same oy, in two different views. The ten-
dencies of the mean residual and the standard deviation
of the residual under changes in # and & are consistent.
Judging from Figure 7(a) and (b), we can find that our

method behaves well in the situations in which the local-
ization precision § < 40 for data set Grid. Under the
condition that localization precision § < 80 and molecule
numbers per bin n > 500, the accuracy of drift compen-
sation by our method can reach to 2 ~ 10 nm. Comparing
Figure 8(a) (b) to Figure 7(a) (b), we find that the perfor-
mance of our method in data set Radio is not as good as
that in Grid when & = 80. The reason why there is such a
difference is that when the localization precision reaches
& = 80, the localization uncertainty is so large compared
to the width of the line structure in Radio (80 nm) that
it degenerates the sampling of the molecule distribution.
Our method performs not good when & = 120 nm (the
width of line in Grid) and the molecule number per bin 7
is very small. The performance of our method is impacted
by bias sampling or mal-sampling, because our method
is based on the direct recovery of position distributions.
Nevertheless, according to recent studies [1,13], localiza-
tion precisions are usually controlled to 10 ~ 35 nm in
2D, which makes the low localization precision not a prob-
lem for our method. Judging from sub-fig (c) and (d), we
can find that # = 500 is sufficient to support a good per-
formance of our method. Additionally, if the localization
precision £ < 20 nm, judging from Figures 7 and 8, we
can conclude that our method can compensate the sample
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Figure 6 Drift correction of the data set where there are 150 molecule positions in each temporal bin. (a) Super-resolution image of data set
Grid, which has no drift imposed. (b) Super-resolution image of data set Grid, which is corrupted by drift. (€) Super-resolution image of data set Grid,
of which the drift is corrected by our method. (d) FRC curve of the data set in sub-fig(a). (e) FRC curve of the data set in sub-fig(b). (f) FRC curve of
the data set in sub-fig(c). (g) Super-resolution image of data set Radio, which has no drift imposed. (h) Super-resolution image of data set Radio,
which is corrupted by drift. (i) Super-resolution image of data set Radio, of which the drift is corrected by our method. (j) FRC curve of the data set in
sub-fig(qg). (k) FRC curve of the data set in sub-fig(h). (I) FRC curve of the data set in sub-fig(i).

drift to a residual of 20 ~ 40 nm with 40 molecule posi-  who are interest in the details of the performance of our
tions per temporal bin and to a residual of about 15 nm  method in the cases where » = 40 and § = 0 nm can refer
with 100 molecule positions per temporal bin. Readers to the Appendix.
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Super-resolution experimental data

To confirm the effectiveness of our drift correction
method for practical applications, real super-resolution
experimental data is utilized.

COS-7 cells were cultured in DMEM complete medium
(Gibco) supplemented with 10% fetal bovine serum and
maintained at 37°C and 5% CO2 in a humidified incu-
bator (Thermo). The cells were fixed with 3% (w/v)
paraformaldehyde and 0.5% glutaraldehyde in PBS for 15
to 40 min at 37°C and washed 3 to 5 times with filtered
PBS. After that, the fixed COS-7 cells were permeabi-
lized for 10 min with 0.1% Triton X-100 and then blocked
in 5% bovine serum albumin (BSA, AMRESCO) diluted
in PBS for 60 min. The mouse anti-f tubule monoclonal

antibody (Sungenebiotech) was diluted 1:200 in PBS con-
taining 2.5% BSA and added to the COS-7 cells in 37°C
incubator for 60 min. After three times rinsing with PBS,
COS-7 cells were then incubated for another 60 min with
the Alexa Fluor 647 labeled rabbit anti-mouse secondary
antibody (Invitrogen), which was also diluted 1:200 in
PBS. At last, the cells were rinsed four times with PBS
and kept in a dark place. The STORM imaging buffer con-
tained imaging buffer base (10% glucose (m/v), 50 mM
Tris (pH 8.0) and 10 mM NacCl), an oxygen scavenger sys-
tem (0.5 mg ml~! glucose oxidase (Sigma-Aldrich), 40 ug
ml~! catalase (Sigma-Aldrich)) and 10 mM MEA. Two
fluorescent beads were embedded on the surface of the
sample.
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STORM imaging of microtubules was performed as
described in [16]. We used an Olympus IX71 inverted
microscope equipped with a 150x 1.45 numerical aperture
(NA) oil objective (Olympus PLAN APO). Two lasers (405
nm and 647 nm (OBIS, Coherent)) were controlled by an
acousto-optic tunable filter (AA Optoelectronic). For exci-
tation, the power of the 647 nm laser was 29.71 mW, mea-
sured near the rear pupil of the objective. The intensity of
the 405 nm laser, typically 10-30 W, was adjusted so that
a low density of molecules was activated at each frame. A
A/4 plate was used to produce circular polarization exci-
tation light. The fluorescence signals were acquired using
an electron-multiplying charge-coupled device (EMCCD)
camera (Andor iXon DU-897). The images were acquired
at a frame rate of 50 Hz and the EM gain of EMCCD

was set to 300. Fluorescent beads were embedded into
the sample for our convenience in comparing them. The
super-resolution image reconstruction was performed as
described in [17]. In order to minimize the influence of the
background, TIRF (total internal reflection) illumination
was used in this study.

5000 frames were recorded during the experiment and
in total 57,702 molecular positions were extracted. Drift
correction based on both beads and our method was
carried out. Every 500 frames were binned into a “big”
time interval. The bead positions were determined in
each frame within the 500 frame bin interval and their
cumulative localizations were used as a reference marker
in drift correction. The experimental result is illustrated
in Figure 9. The raw image without drift correction is
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Figure 9 Experimental data. (a) Super-resolution image of experimental data set, of which the drift has not been corrected. (b) Super-resolution
image of experimental data set, of which the drift is corrected by our method. (c) Super-resolution image of experimental data set, of which the drift
is corrected by method based on beads. (d) FRC curve of the data set in sub-fig(a). (e) FRC curve of the data set in sub-fig(b). (f) FRC curve of the

data set in sub-fig(c).

illustrated in Figure 9(a). The structure corrected by our
method is illustrated in Figure 9(b) and the structure cor-
rected by fluorescent beads is illustrated in Figure 9(c).
The FRC curves for the three structures are also illus-
trated in Figure 9(d), (e) and (f). The FRC resolution
of the raw data is 393.4 nm, the resolution of the data
corrected by our method is 84.3 nm and the resolu-
tion of the data corrected by marker is 83.9 nm. We
find that the result of our method is very close to
that of the fluorescent beads. In addition, the recent
work [10] has confirmed that for some special scenar-
ios, using the biological data itself could achieve bet-
ter results than the use of beads, which may move or
fade during data acquisition. Thus, generally, our method
could be more feasible than the method using fluorescent
beads.

Discussion and conclusion

In this paper, we proposed a new metric based on distance
minimums to cope with the drift correction in single-
molecule imaging. Our method is based on the restoration
of the distribution of molecular position. There are two
advantages of our method. First, because our method does
not require space binning of positions of molecules but
directly operates on the positions, it is more natural to
single molecule imaging techniques. Second, our method

estimates the drift with a small number of positions in
each temporal bin, which may extend the potential appli-
cation of our metric. The result of simulated test data
proved the effectiveness of our method. Our method can
be easily extended into 3D super-resolution photography,
and the Gaussian kernel can also be replaced in some
special situations.

Appendix

Figure 10 illustrates the results of an experiment based
on data sets Grid and Radio, where all the conditions are
the same as the previous experiment except that there
are in total 1,600 molecule positions in every data set
(40 positions for each bin). Here, the FRC resolution of
Grid corrected by our method is 164.5 nm, while the FRC
resolution of Grid after drift is 730.9 nm. The FRC resolu-
tion of Radio corrected by our method is 214.4 nm, while
the FRC resolution of Radio after drift is 620.3 nm. As a
comparison, the FRC resolutions of the data sets that are
free of sample drift are 158.1 nm and 193.2 nm for Grid
and Radio respectively. Our method performed well for
data set Net, but barely satisfactorily in data set Grid. The
reason why there is such a difference in behavior of our
method on the two sets is that the sampling is too sparse
and has introduced bias in the data set Radio. Though
our method has not corrected all the sample drift under
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Figure 10 Drift correction of the data set where there are 30 molecule positions in each temporal bin. (a) Super-resolution image of data set

Grid, which has no drift imposed. (b) Super-resolution image of data set Grid, which is corrupted by drift. (€) Super-resolution image of data set Grid,

of which the drift is corrected by our method. (d) FRC curve of the data set in sub-fig(a). (e) FRC curve of the data set in sub-fig(b). (f) FRC curve of

the data set in sub-fig(c). (g) Super-resolution image of data set Radio, which has no drift imposed. (h) Super-resolution image of data set Radio,

which is corrupted by drift. (i) Super-resolution image of data set Radio, of which the drift is corrected by our method. (j) FRC curve of the data set in
sub-fig(qg). (k) FRC curve of the data set in sub-fig(h). (I) FRC curve of the data set in sub-fig(i).

this condition, our method has corrected the majority  situation. Nevertheless, 40 positions per temporal bin may
of the drift in the situations where the cross-correlation not happen in a real experiment and the experiment in
method barely works. This experiment demonstrates that  this Appendix is only intended to demonstrate the range
our method can correct sample drift in a very critical of potential applications of our method.
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