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Abstract

Background: Transcription in Escherichia coli generates positive supercoiling in the DNA, which is relieved by the
enzymatic activity of gyrase. Recently published experimental evidence suggests that transcription initiation and
elongation are inhibited by the buildup of positive supercoiling. It has therefore been proposed that intermittent
binding of gyrase plays a role in transcriptional bursting. Considering that transcription is one of the most
fundamental cellular processes, it is desirable to be able to account for the buildup and release of positive

supercoiling in models of transcription.

Results: Here we present a detailed biophysical model of gene expression that incorporates the effects of
supercoiling due to transcription. By directly linking the amount of positive supercoiling to the rate of transcription,
the model predicts that highly transcribed genes’ mRNA distributions should substantially deviate from Poisson
distributions, with enhanced density at low mRNA copy numbers. Additionally, the model predicts a high degree of
correlation between expression levels of genes inside the same supercoiling domain.

Conclusions: Our model, incorporating the supercoiling state of the gene, makes specific predictions that differ from
previous models of gene expression. Genes in the same supercoiling domain influence the expression level of
neighboring genes. Such structurally dependent regulation predicts correlations between genes in the same
supercoiling domain. The topology of the chromosome therefore creates a higher level of gene regulation, which has
broad implications for understanding the evolution and organization of bacterial genomes.
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Background

The dynamics of gene expression in single cells has been
studied extensively in the last 15 years, yielding new
insights into the processes of transcription and transla-
tion [1-6]. Populations of cells are now known to exhibit a
large degree of heterogeneity in both mRNA and protein
expression levels [7]. The probabilistic nature of molec-
ular reactions gives rise to the intrinsic component of
this variation, while the differences between cells, such as
the levels of RNAP, ribosomes, etc, produce the extrinsic
component [8, 9]. Both types of noise contribute to the
wide distributions of mRNA and proteins in a population
[10-14]. But only extrinsic fluctuations are typically
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considered capable of introducing correlations into the
expression levels of different genes within a single cell.
The fluctuations and correlations can in principle be
used to study the details of the underlying molecular
processes [15].

One repeated theme when studying single cell gene
expression is the occurrence of bursts during the pro-
duction of mRNA and/or proteins. In particular, the
production of mRNA has been shown to deviate from
a simple birth-death process, instead occurring in tran-
scriptional bursts [16, 17]. Transcriptional bursting gives
rise to distributions with a Fano factor greater than one
[14, 16, 18, 19]. Furthermore, it has been shown through
single-molecule mRNA studies that the transcriptional
bursting behavior is dependent on the expression levels
and promoter architectures of the genes [14, 18]. The
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origin of these transcription bursts is still a subject of
active inquiry and debate [14].

Recently, Chong et al. provided evidence supporting
one contributing mechanism for transcriptional bursting
in E. coli [20]. As RNA polymerase (RNAP) translocates
along the DNA producing mRNA, positive supercoil-
ing is generated downstream and negative supercoiling
upstream of the enzyme complex [21]. In the absence of
other factors, dissociation of RNAP would enable the pos-
itive and negative supercoils to resolve each other, leaving
a zero net change in the supercoiling state. In E. coli
there are two major factors when it comes to relieving
supercoiling generated by transcription, topoisomerase
I (Topo I) and gyrase. Topo I relieves negative super-
coiling while gyrase relieves positive supercoiling. In E.
coli Topo I has a higher activity than gyrase, as nega-
tive supercoiling can be very detrimental to the organism.
This imbalance causes positive supercoiling to accumulate
until gyrase binds and relieves the positive supercoiling
[20]. The results of Chong et al. indicate that the build-
up of positive supercoiling is one source of transcriptional
bursting, where bursts occur when positive supercoil-
ing inhibiting transcription of the gene is relieved, see
Fig. 1.

Many models of gene expression have been proposed
and studied, e.g. see [22-25]. However, none of these
models account for the generation of positive super-
coiling from transcription events. If this is part of
the mechanism by which transcriptional bursting takes

Fig. 1 Positive Supercoiling (Pcoil) is produced when mRNA is
transcribed. Pcoil inhibits the production of mRNA by reducing the
initiation rate. In order to relieve Pcoil gyrase must bind (Gyrase’),
which converts Pcoil into the “regular” state (Rcoil)
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place, incorporating the accumulation of positive super-
coiling in gene expression is vital in order to cor-
rectly describe the fluctuations and correlations of the
system.

Here, we first develop a biophysical model to quan-
tify the effect of supercoiling density on the transcription
initiation rate. Then, using a simplified version of this
model, we create a kinetic model of gene expression that
directly accounts for the accumulation of supercoiling
during transcription. When supercoiling is accounted for,
our model predicts a change in the shape of mRNA distri-
butions for genes with strong promoters, with an increase
in low non-zero mRNA copy numbers. We then inves-
tigate the effect of having multiple genes in the same
supercoiling domain and find a correlation in the expres-
sion of these genes. Having multiple genes in the same
supercoiling domain also results in each gene’s expres-
sion influencing the expression of other genes in the
same domain. These results not only provide insight
as to how genes are expressed and regulated in bacte-
ria, but also provides new directions for experimentally
testing for the effects of domain coupled transcriptional
bursting.

Methods (model)

Biophysical model for RNAP initiation with supercoiling

In order to produce mRNA, RNAP must bind and melt the
DNA strands to allow an RNA-DNA hybrid to form before
proceeding to elongation [18, 26]. This process necessi-
tates maintaining the stability of the open complex long
enough to form the DNA-RNA hybrid so RNAP can form
an elongation complex [26, 27]. Recently, Chong et al. uti-
lized an in vitro assay to demonstrate the effect of positive
supercoiling on the rate of initiation for RNAP, both T7
RNAP and the E. coli RNAP. Their experiment monitored
the production of mRNA from 160 individual molecules
using an RNA-specific fluorescent dye. In the absence of
gyrase, positive supercoiling accumulated, resulting in a
decrease in the initiation rate of transcription. In their
experiments, this manifested as a decrease in the fluo-
rescence intensity with time as mRNA transcripts were
being produced less frequently (Fig. 2a, T7 RNAP). The
cumulative sum of this data equals the total number of
transcription events that had occurred by a given time
(Fig. 2b, red line). Using the reported intensity of a sin-
gle mRNA transcript, 13.5 x 103 [20], the average time
it takes every template to produce an mRNA molecule
can be calculated; this is termed an “average transcription
event” (Fig. 2b, green triangles). The time between suc-
cessive transcription events shows the decline in initiation
rate due to positive supercoil accumulation (Fig. 2c). The
decrease in the initiation rate with each average transcrip-
tion event can be seen in Fig. 2d and roughly decreases
linearly.
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Fig. 2 a Experimental data from [20] for T7 RNAP where the fluorescence intensity corresponds to the rate of transcript initiation in the absence of
gyrase and the presence of Topo . b The cumulative sum (red line) of the data in a corresponding to the total number of MRNA transcripts
produced through time. Also shown are the times of average transcription events (green triangles) determined from the original data, see text.

¢ The time between average transcription events. d The initiation rate by transcription event number (green triangles) and a linear fit (dashed line)

In order to study why the initiation rate decreases in this
manner we use the following kinetic model:

kon cal
RNAP + DNA = RNAP: DNA““RNAP : DNA,
off
X RNAP + mRNA + DNA,

where RNAP : DNA. is the closed conformation and
RNAP : DNA, is the open conformations of RNAP. The
rate kcat is the rate at which the bound RNAP is able
to transition to the open complex (melted DNA) and k¢
is the rate at which the RNAP transitions to the stable
elongation complex. These two rates are considered to
be irreversible because of the small reverse rates [28, 29].
Using the steady state approximation and the assump-
tion that the initial step in the initiation of transcription
(kcat) is the rate limiting step [29], the kinetic model above
results in the form of the classic Michaelis-Menten kinetic
equation. The same Michaelis-Menten form has also been
obtained for the steady-state approximation of more com-
plicated kinetic models of transcription initiation [29-31].
In those studies, though, the definitions of the two con-
stants Vinax and ks differ.

Considering the substrate copy number, specific pro-
moter DNA, is much lower than the RNAP in a cell, the
production rate of mRNA can then be approximated as:

kcat + koff

V' = keat/kpr, where ky; = T
on

(1)

The question of interest is how does supercoiling
affect these different rates? It has been shown on lin-
ear pieces of DNA that the melting of the DNA in
the promoter is a minor kinetic barrier [32]. However,
positive supercoiling has been shown to increase the
melting temperature of DNA and could cause the sta-
bility of the DNA to become influential [33]. Here we
make the assumption that supercoiling only influences
the kof rate. This assumption is supported by experi-
mental evidence that the binding affinity of T7 RNAP
for the single stranded promoter sequence is greater and
it dissociates slower with a single stranded promoter
sequence [32, 34].

We do not rule out the possibility that the stability of
the DNA could also influence the other kinetic rates in
the model and the rates involved could differ depend-
ing on the particular RNAP. For example, considering
that supercoiling of the DNA influences the amount of
energy needed to melt the DNA, it also seems plausi-
ble that the supercoiling could affect the rate kcyt. In the
SI we repeat the below derivation for the k¢ rate and
show that one obtains the same final result Additional
file 1. Also, the existence of supercoiling sensitive pro-
moters in E. coli for which positive supercoiling increases
the transcription rate cast some doubt on such a simplify-
ing assumption. However, additional experimental results
would be needed to construct a more detailed model that
differentiates how different RNAP states are influenced by
supercoiling.
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In the following, we make the assumption that the
change in the free energy of the transition state for
unbinding directly depends on the energy needed to melt
the DNA of the promoter. In order to provide energetic
insights as to how supercoiling would affect the DNA we
utilized the statistical mechanical model of supercoiled
DNA developed by Sen et al. [35, 36], which was built on
the framework provided by Benham [37, 38]. This model
showed close agreement with experimental results and
was demonstrated over a wide range of supercoiling densi-
ties [33]. It should be noted that Benham has also utilized
this model to develop a kinetic scheme for reactions with
single stranded and double stranded DNA [39]. The free
energy of having n melted base pairs, #; junctions and a
certain density of supercoiling, o is:

"
G(n,nj,0) = n(e — TAS) + 5’ x €+ Gs(n,0) + K, T

x In[g(n, ny],

CxN (% +a)

G = e T - DA
g(nm) = NN —n—1Dl(n—-1)!
W= ) (=) (5 - 1)1(3)!

Here, AS = .024 kcal/(K mol) is the conformational
entropy due to melting a base pair. ¢ = 7.9 kcal/mol and
€, = 2.5 kcal/mol are the base pairing and base stacking
energies, respectively. The function g(n, #)) is the degen-
eracy factor with N total base pairs. C = 1638—keal

molxrad?

and @ = 23.4 depend upon the bending and the torsional
stiffness, respectively [36] , and A = 10.4 base pairs per
rad? for DNA in the relaxed state, see SI for derivation of
supercoiling energy G;. We use the same parameters as
obtained in [36].

Starting with n melted base pairs in a circular DNA
loop of N base pairs the probability of having k melted
base pairs in the promoter, consisting of Np base pairs,
would follow a binomial distribution with a probability of
successes equal to n/N. This is only valid when a lower
fraction of the DNA is melted n/N< 0.06, otherwise
more than one melted base pair will be inside the same
melted junction [35]. Here we assume that we are at room
temperature and this assumption most likely holds. The
probability of having a certain number of melted base
pairs given the supercoiling density of the DNA would
follow the Boltzmann distribution:

*G(n.nj,rf)
K, T
VI/' € b
P(nlo) =

—G(ﬂ,nj,n) *

STy BT
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Then the change in the free energy barrier of the transi-
tion to a melted promoter at a certain o is:

AG(o) = Z%::P(MU) X (1\1[([9) (%)k (1 _ %)Np*k

x (Np — k)(€) + AGy),
AGs = Gs(n+ Np — k,0) — Gs(n,0).

The main effect the supercoiling density has is to
alter the probabilities of having a certain amount of
DNA melted, which influences the probability of hav-
ing a melted base pair inside of the promoter region and
the amount of energy needed to melt the DNA in the
promoter region. Taking the difference of the transition
state relative to the transition state at no supercoiling we
obtain:

AAG(0) = AG(o) — AG(0). (2)

Using the parameters obtained in [36], with N = 180 bp
and Np = 8 bp, we numerically solved for the change in
free energy; AAG(o), shown in Fig. 3a. According to tran-
sition state theory the rate should depend upon AAG(o)

AAG(o
according to: k(o) = k(o) X e_T%), where k(o) is the ini-
tial rate with no supercoiling density. Numerical values for
k(o) are shown in Fig. 3b.

In order to simplify further we approximate k(o) as a
simple exponential, demonstrated by the fit to the data
generated by the model in Fig. 3b, k(o) = ™. This
is only true if AAG(0) is linear with o, which has been
shown in numerous papers dating back to 1975 [40]. Plug-
ging the exponential function into Eq. 1 and flipping the
sign in the exponent for ko, where the negative in the
exponent disappears because the open complex is try-
ing to maintain the melted DNA, we obtain the following
equation for the production rate of mRNA:

keat X Kon _ kon

k(0)off X €0 + kot K x e +1’
where k(0)off is the initial off rate with no supercoiling, w
is a constant and k" = k(0)off/kcat. A fit to the experimen-
tal data from [20] with the 3 free parameters is shown in
Fig. 3c. The fit is merely illustrative here and the param-
eter values obtained (not shown) do not represent actual
kinetic rates of T7 RNAP, because we are missing knowl-
edge about the amount of supercoiling that results from
one transcription event. The parameter values also have
a large degree of uncertainly, due to the small number of
data points.

By simplifying using an exponential we have combined
the various energetic parameters that describe the bio-
physical characteristics of the system from the model into
a single parameter w. Though we do not explicitly use
the energetic parameters in the remainder of the paper,

V(o) =

(3)
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Fig. 3 a The theoretical change in free energy needed to melt the base pairs of the promoter sequence by supercoiling density o, from Eq. 2. b The
change in the rate, K, by supercoiling density (dots) and a single exponential fit (ine). € Transcription initiation rate vs the number of transcription
events (green triangles) from experiment [20], the full theory Eq. 3 (red line) and the linear theory Eq. 4 (black line). The full theory had a fit R-square =

the full form of Eq. 2 could in principle be used to study
supercoiling—transcription interactions in more biophys-
ical detail, e.g., the sensitivity of different promoters to
supercoiling based on base composition. We discuss such
uses of Eq. 2 further in the SL

Equation 3 can be further approximated using a Taylor
series expansion, neglecting the higher terms of O(c?),
which will be negligible, consideringo << 1fora >> 1
[36]. We then obtain a function for V linear in o:

kOl’l kOl’l

N kon X W x k' x o
Kxew +1 K+1

Vo= K +1)?

(4)

This linear equation’s parameters have intuitive biolog-
ical meaning: the y-intercept of the linear fit would then
correspond to the production rate at zero supercoiling and
the slope would determine how many times the loop of
DNA could be transcribed before stalling.

Figure 3c shows a comparison of the full and linear theo-
ries. There are many other factors that could be taken into
consideration other than the melting of the DNA when it
comes to the production rate of mRNA with supercoiling,
but we consider this derivation a starting place to under-
stand how the stability of supercoiled DNA can lead to

the initiation rate decrease. We would like to particularly
emphasize that the kinetic model of RNAP is a major sim-
plification, considering that it does not include abortive
initiation and the stability of the DNA could influence
other kinetic rates. Also, the system may not necessarily
start with a supercoiling density of zero, which would then
lead to an even greater difference in the free energy to the
transition state when supercoiling is accounted for. Due to
the easy interpretation of the parameters extracted from
the linear fit approximation, we use the linear model in the
remainder of the study.

Kinetic model for transcriptional bursting within a
supercoiling domain

The accumulation of supercoiling due to transcription is
primarily based on the “twin-supercoiled-domain model”
of transcription [21]. Positive supercoiling in different
domains builds up due to the absence of gyrase and the
presence of Topo 1. Positive supercoiling from transcrip-
tion has been shown to be a major factor in the build up
of supercoiling and positive supercoiling has been shown
to have a dramatic effect on the initiation rate of tran-
scription in highly expressed genes [20, 41]. Therefore, it
is critical that the buildup and release of positive super-
coiling inside specific supercoiling domains be accounted
for in modeling these processes.
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To study the effect of supercoiling on mRNA and pro-
tein distributions, we combined our biophysical model,
which describes the dependence of transcription initia-
tion on the supercoiling state of the local DNA domain,
with a kinetic model of gene expression. We based our
kinetic model on a simple burst model of gene expression
[24]. Burst models have been frequently used to model
stochastic (probabilistic) gene expression [7, 24, 42, 43]. In
the burst model, a gene is transcribed to produce mRNA,
which is translated to produce protein. Both transcription
and translation are first order processes without explicit
RNAP or ribosome species. Both mRNA and protein
decay also as first order processes. The burst model results
in a Poisson distribution of mRNA molecules and a nega-
tive binomial distribution of proteins [10, 44]. Under some
conditions, the negative binomial can be approximated
by a gamma distribution [24], which is a two parameter
distribution relating to the burst frequency and the burst
size.

Here we present a modified gene expression model
such that the transcription rate is linearly dependent on
the amount of positive supercoiling that has accumulated
in the local DNA domain, in accordance with our sim-
plified biophysical model of transcription initiation. We
first define two additional species RCoil and PCoil that
track the amount of “regular’, the normal state, and pos-
itive supercoiling, respectively, inside the local domain.
The sum of these two species is fixed and is denoted
by max(RCoil). Production of a transcript converts one
RCoil into a PCoil. Here, we assume an implicit fast relax-
ation of the corresponding negative supercoiling by Topo
1 [45]. Though, we do not rule out the possibility that
other Topoisomerases may be contributing to the dynam-
ics of these systems. The accumulation of PCoil linearly
decreases the transcription rate of the DNA supercoiling
domain according to reaction (1) in Table 1. The value
of max(RCoil) is therefore equal to the number of times
the DNA domain can be transcribed before transcription
stalls.

To model the relaxation of the positive supercoiling we
introduce a gyrase binding site in the local DNA domain

Table 1 Kinetic model for gene expression with local
supercoiling effects

Reaction Propensity

(M DNA + RCoil — DNA + PCoil + mRNA do % RCoil

@) MRNA — 0 y X MRNA

(3) MRNA — Protein by X y x MRNA
4) Protein — 0 d x Protein

(5) Gyrase — Gyrase' K1

6) Gyrase’ — Gyrase K2

7) Gyrase’ + PCoil — Gyrase' + RCoil R x PCoil
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as an additional species that can either be empty Gyrase or
bound with a gyrase molecule Gyrase’. We assume a con-
stant pool of free gyrase such that binding is pseudo first
order. Gyrase unbinding follows first order kinetics. When
gyrase is bound PCoil is converted to Rcoil with a rate con-
stant R that is fast relative to the other rates in the system,
such that when gyrase is bound the local domain is effec-
tively always in the “regular” state. The complete model
is shown in Table 1 and directly links the accumulation
of supercoiling to the number of transcription events that
have taken place since the last time that gyrase unbound.

To test our kinetic model, we simulated the in vitro
experiment conducted by Chong et al. [20] by extract-
ing two parameters from the linear fit in Fig. 2d. The
y-intercept of the linear fit in Fig. 2d corresponds
to the maximum initiation rate, a, x max(RCoil) =
0.0032sec™!. The x-intercept corresponds to the number
of transcription events that can take place before stalling,
max(RCoil) = 13. All other rates and species were set
to zero. We ran 160 simulations with a single gene in
the supercoiling domain. The results of the simulations
show good agreement with the original data despite the
numerous approximations made in the derivation, shown
in Fig. 4.

In order to take into consideration the stochastic nature
of the reactions in Table 1 we used the Gillespie algorithm
to simulate the model [46]. This was done assuming that
the cell is a well stirred environment with no spatial con-
straints. These simulations where run using the program
Lattice Microbes [47] with the rates normalized to the
degradation rate of the protein, which is assumed to be on
the order of cell division. In the remainder of this study,
the rates for the equations in Table 1 were y = 50,5, = 2,
d = 1,K1 = 10,K2 = 35,R = 1000, max(RCoil) = 4,
except when specified in different specific situations.

The mRNA degradation rate, y, was chosen so that the
lifetime of the molecule would be short, ~2 min. The
value of max(RCoil) was set to 4, as opposed to using the
fit value from the single-molecule in vitro experimental
data shown earlier for the T7 RNAP. In E. coli it has been
previously suggested that 4 rounds of complete transcrip-
tion in a supercoiling domain could result in inhibiting
transcription, due to the environment of the cell [20]. The
rates for promoter strength, a,, and translation rate, b,,
can take on a large range of values, we simply choose
values that produced means that are physiologically
relevant [7].

The range of rates for gyrase in the cell is a matter of
debate and likely depends on many different factors. For
instance, in vitro the dissociation constant has been mea-
sured to range from 0.2—0.5 nM for specific gyrase binding
sites to 100nM for weaker binding sites [20, 48, 49].
Though, what is taking place in vivo adds new factors
to the system that need to be taken into consideration,
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e.g., there are endogenous inhibitors of gyrase [50, 51].
Using the Zero-spike model, discussed later, Chong et al.
[20] estimated the ratio of the gyrase binding to unbind-
ing rates for multiple genes in vivo using smFISH. They
observed a range of values ~0.1-4.5 demonstrating that
the kinetic rates of gyrase vary greatly from gene to gene
inside the cell. In our model, K1 was set to give an average
rebinding time of % of the cell doubling time (~6 min for
1 h doubling) and then assuming a weak gyrase binding
site with a ratio of K1/K2 = 0.28, K2 = 35.

Results

mRNA distribution

The probability distribution of the number of mRNA
molecules per cell is an important quantity in gene reg-
ulation. Several previous studies have utilized smFISH
to quantify the mRNA distributions of various genes
[7,14, 18, 20]. In order to study how the promoter strength
of the gene influences the distribution of mRNA in our
supercoiling model, we simulated one gene with a strong
promoter and one gene with a weak promoter by set-
ting a, = 100 and a, = 20, respectively. In the absence
of supercoiling, these two promoter rates would result in
Poisson distributions with a mean mRNA copy number
of 8 for the strong and 0.4 for the weak promoter. To cal-
culate the different distributions of mRNA generated by
our supercoiling model, we simulated the equivalent of
4000 cells using the parameters specified above. Here, we
ignore the protein part of the distribution, although we
keep all rates relative to a protein degradation rate of 1.

Figure 5a shows the mRNA distribution for the strong
promoter with a weak gyrase binding site. Compared to
a Poisson fit to the mRNA distribution, our supercoil-
ing model spreads the density over a larger range of copy
numbers. In particular, rather than being peaked at a
non-zero copy number, our model predicts a large peak
at zero copy number with a gradually decreasing den-
sity thereafter. Broadening of the mRNA distribution is
also a characteristic of extrinsic noise and certain pro-
moter architectures [14, 52], but here we focus only on the
influence of supercoiling on the distributions.

Chong et al. [20] also developed a model to obtain a
probability distribution of mRNA by incorporating gyrase
binding and unbinding, the Poisson with Zero Spike
(PZS) distribution. In their model the gene of inter-
est switches on when gyrase is bound and immediately
switches off when gyrase unbinds. However, the accu-
mulation of supercoiling is not linked with the num-
ber of transcription events, thus the initiation rate does
not decay as supercoiling accumulates. The distributions
predicted by this model deviate substantially from the
model proposed here. The PZS distribution obtained by
using rates K1, K2, a, x max(Rcoil), and y can also
be seen in Fig. 5a. The PZS distribution exhibits greatly
enhanced density at zero copy number and has a distinct
lack of density at low non-zero mRNA copy numbers.
Our model and the PZS model converge when K1/K2 is
extremely low.

When the promoter strength of the gene is low, the dis-
tribution from our model shows only minor deviations
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from a Poisson distribution, with a slight enhancement at
zero copy number (Fig. 5b). The corresponding PZS dis-
tribution again shows a greatly enhanced density at zero
copy number.

The degree to which a distribution corresponds to a
Poissonian can be quantified by the Fano factor, the vari-
ance divided by the mean, which is always one for a
Poisson distribution. To study the influence of promoter
strength and gyrase binding rate on the deviation of our
mRNA distributions from Poissonian, we performed sim-
ulations across a wide range of these two parameters.
Figure 6 shows how the Fano factor changes as these
two parameters vary. As the binding affinity of gyrase
decreases and the promoter strength increases, the Fano
factor deviates further from that of a Poisson distribu-
tion. This overall trend is in agreement with experi-
ments where genes with higher mean number of mRNA

400
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5 10 15 20 !
K1 (Gyrase Binding Rate) Fano Factor
Fig. 6 The Fano factor, variance/mean, of mRNA of a single gene
inside a supercoiling domain with varying initiation rate g; and gyrase
binding affinity K1

(due to stronger promoters) also have a higher Fano
factor [14, 18].

The increase in Fano factor with mean mRNA copy
number is typically ascribed to extrinsic noise. How-
ever, extrinsic noise shifts the Fano factor of highly
expressed genes’ mRNA by broadening the distribution
around the mean whereas in our model the Fano fac-
tor increases due to the expansion of the distribution
toward higher mRNA copy numbers, while maintain-
ing a significant density at zero and low copy numbers.
Thus, the Fano factor by itself cannot be used to distin-
guish between genes with high variability from extrinsic
noise or supercoiling, full distributions are necessary.
Measured smFISH distributions likely contain noise con-
tributions from both of these and other sources of
noise and obtaining distributions from a large variety of
native E. coli genes could help to disentangle the various
contributions.

Protein distributions compared to the burst model of gene
expression

We next sought to compare the protein distributions pro-
duced by our supercoiling model against those produced
by a typical model used for studying stochastic gene
expression. The standard burst model of gene expression,
shown schematically in Fig. 7a, results in a negative bino-
mial distribution of proteins [10]. Under conditions where
the decay rate of mRNA is fast relative to that of proteins
(y >> 1), as is typically the case in bacteria, the dis-
crete negative binomial distribution can be approximated
by the gamma distribution [10, 24]: p(n) = %
where I' is the gamma function. The rates used in our
model would correspond to the gamma distribution with
a=a,-max(RCoil)/dand b =b, - y/y = b,.
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Fitting protein abundance data to a gamma distribu-
tion gives an estimate for two key parameters from the
model: a, the burst frequency, and b, the burst size.
We wanted to study how well these two parameters
could be estimated using a gamma distribution if the
underlying data were generated by our kinetic model,
which accounts for supercoiling induced transcriptional
bursting.

We generated simulation data from our supercoiling
model using the parameters a, = 90, max(RCoil) = 4,
b =2,y =50, K1 = 10, and K2 = 35. The station-
ary probability distribution for the protein is shown in
Fig. 7b. The distribution has the typical long tail seen in E.
coli protein distribution data. We then fit our simulation
data to a gamma distribution. Although the distribution
appears to be well-described by a gamma distribution,
the a and b parameters from the fit no longer corre-
spond to the model parameters. The estimated a value was
13.2 and the estimated b value was 15.1, which are each
approximately an order of magnitude from the correct
values.

In a case where the gyrase binding site is predominantly
occupied, i.e. when K1 is high and K2 is low, our model
converges to the burst model. Likewise, when the initi-
ation rate is comparable to the gyrase binding rate, the
two models converge. To determine the parameter regions
for which the two models give similar results, we per-
formed a parameter scan of K1 and a, and compared
the model parameters versus the gamma fit parameters.
Figure 7c+d show the results of the comparison. We con-
sistently find an underestimation of a4, which is to be
expected as a is an effective burst frequency while ag is the

basal transcription initiation rate. We also saw a consistent
overestimation of b.

Correlations between genes in supercoiling domains

The supercoiling domains in E. coli are thought to be
loops roughly 10kb in size [53]. The build-up of positive
supercoiling in a local DNA domain affects not only the
gene being transcribed, but all other genes in the domain.
Here we assume that when a gene in a domain is tran-
scribed the transcription of a neighboring gene does not
cancel/enhance the supercoiling generated by its neigh-
bor. However, if more than one gene in the supercoiling
domain is being transcribed at the same time whether the
genes are arranged in a codirectional or divergent pattern
would be an important factor.

To study any correlations introduced into gene expres-
sion by this coupling, we modified our model to include
multiple genes in a supercoiling domain. When a series of
genes are present in same topological domain we refer to
this as a linked domain. Promoters for all of the genes in
a linked domain share the same supercoiling state, RCoil.
To analyze expression correlations within a linked domain
and to control for background correlations between inde-
pendent genes, we constructed a system containing two
independent supercoiling domains, each with five genes.
We maintain the assumption that each DNA loop can be
transcribed a total of four times before stalling, as dis-
cussed above. Since there are now five genes in each linked
domain, we set max(Rcoil) to be 20 for each to allow
them to be fully transcribed on average four times before
stalling. Each of the two domains has a single and inde-
pendent gyrase binding site, based on evidence that there
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is roughly one gyrase molecule for each loop in E. coli
and gyrase is thought to have relatively specific binding
sites [54].

We simulated a system in which the first linked domain
contained genes with promoters ranging from strong to
weak (genes 1 — 5) and the second linked domain con-
tained genes with only weak promoters genes (6 —10). The
a, values for the genes from 1 to 10 are 34, 20, 14, 10, 6,
2,3,2.4,0.4, 1.0. We recorded the expression level of each
gene over the course of the simulation. Figure 8a+b show
the mean expression levels of the mRNA and protein,
respectively. Also shown are the expected values if each
gene were in its own independent supercoiling domain.
The mRNA and protein levels of relatively weak promoter
genes 3-5, which reside in the supercoiling domain with
the strong promoter genes, were significantly reduced.
The weak promoter genes sharing supercoiling domain 2
were less perturbed.

Next, we calculated the pairwise correlations between
mRNA and proteins for all of the genes, py, = CO;(); 4%
The correlations are shown in Fig. 8c+d. Both mRNA
and protein of genes in the same linked domain showed
correlated expression in individual cells and were only
correlated with genes in the same linked domain. The
correlation of the genes in individual cells was found to
be dependent upon the promoter strength, where the
presence of a gene with a strong promoter increases
the correlation of all genes in the linked domain. The
linked domain containing only genes with weak promot-
ers exhibited significantly less correlation. In both cases
the proteins showed slightly higher correlation than the
mRNA. Weaker binding affinity for gyrase, K1/K2, for a
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linked domain also increased the correlation of the genes
(data not shown).

Negative regulation

Finally, we investigated how regulating the promoter
strength, a,, of a gene inside a linked domain would influ-
ence the expression level of other genes inside the domain.
We performed simulations of a single linked domain con-
taining five genes with decreasing promoter strength. The
expression level of each gene in the linked domain was
analyzed before and after the inhibition of gene 1, see
Fig. 9. Inhibition of gene 1, which had the strongest pro-
moter, led to an increase in the expression level of the
other genes in the same domain.

Conclusions
Supercoiling build-up generates broad mRNA distributions
Our model linking supercoiling to transcription pro-
duces mRNA distributions that are noticeably different
than those predicted by the burst and two-state models,
as shown in Fig. 5. Of particular note is the enhanced
probability at low (but greater than zero) copy numbers.
Because transcription in our model gradually turns off,
the distribution is spread over a wide range of low values,
rather than being concentrated in a Poisson distribution
for the high state and at zero for the low state. Anecdotally
this agrees with some published mRNA distributions, e.g.
[20], but a systematic survey must wait until genome-scale
single-cell mRNA distribution data are available.

It has been shown that the Fano factor of the mRNA
distributions is greater than one for highly transcribed
genes [7, 14, 18]. This behavior is captured by our model,
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Fig. 9 The mean mRNA level of the genes in a supercoiling domain
with all genes expressed (blue) and when gene 1 is inhibited (red)

though we acknowledge that sources of extrinsic noise
also contribute to this effect [14]. It is likely that the noisy
distributions of mRNA observed in natural E. coli genes
contain contributions from both supercoiling inhibited
transcription and extrinsic sources of noise.

When analyzing the protein distributions produced by
our model, we found that the a and b values deviated
greatly from the predicted values of the burst model even
though the distribution could be fit by a gamma distribu-
tion. If the fit to a gamma distribution is justified, the a
value will correspond to the number of mRNA produced
in a proteins lifetime and the b value will correspond to the
number of proteins produced per mRNA transcript. Our
model shows that when supercoiling is introduced the a
and b values determined from the fit do not correctly rep-
resent the underlying processes of the system. Therefore,
studies that rely on a physical interpretation of a and b
may need to be adjusted.

Our results do not necessarily mean it is impossible to
extract the underlying biological parameters from the dis-
tributions of mRNA and protein. Though we consider it
to be beyond the scope of this paper, if the gyrase bind-
ing constants could be varied in a controlled manner and
the distribution of mRNA could be obtained at different
gyrase binding rates, then the parameters in our model
could potentially be found through fitting. Even though
there is no unique analytical formula for the distribution
produced by our model, the parameters could be found by
fitting to numerical solutions. Additionally, other known
sources of noise, such as extrinsic noise, would also have
to be incorporated into the model [14, 52]. This study pro-
vides a step toward a more detailed biophysical model of
transcription during gene expression.

Coordination of transcriptional bursts in neighboring
genes

Correlation in the transcription of genes in bacteria has
been previously reported. In [55], the expression levels of
neighboring genes in E. coli were shown to be correlated
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and dependent on supercoiling. The authors concluded
that expression levels were directly linked to the distribu-
tion of gyrase on the chromosome. Our model predicts
this effect; gyrase has differing binding affinities for dif-
ferent supercoiling domains, which effectively controls
the overall expression level of each gene in the same
supercoiling domain. Other authors have reported that
expression of an inducible reporter gene represses down-
stream neighboring genes [56]. Our model also exhibits
this effect, as upregulation of one gene (or set of genes) in
a supercoiling domain reduces expression of other genes
in the domain.

Though correlation in the overall expression level of
genes has been observed, our model predicts an additional
degree of correlation, namely correlation in the transcrip-
tional bursts of all genes in a supercoiling domain. Our
model gives rise to correlation of not only protein abun-
dance but also nRNA abundance of neighboring genes in
a supercoiling domain, such as shown in Fig. 8. This cor-
relation, coupled with the short lifetime of mRNA, means
that bursts of mRNA molecules are also correlated in time
between genes, i.e. neighboring genes are active and inac-
tive in synchrony with each other. Such synchronization
could be an important mechanism of transcriptional reg-
ulation in bacteria [57]. For instance, genes corresponding
to specific functions are known to be located in similar
areas on the genome. Synchronous expression of these
genes would help to ensure all of the components are
produced at the same time.

The correlation of clustered genes has been probed
experimentally and clustering was not found to have a sig-
nificant impact on the expression levels [58]. The authors
proposed that any correlations due to gene clusters were
washed out by the global extrinsic fluctuations. How-
ever, this was only done at a few specific locations in
the chromosome and the effect of supercoiling may have
been overlooked considering supercoiling not only affects
the correlation in overall expression, but influences the
correlation though time in the individual cells. In order
to observe high correlation we found that the expres-
sion level of the genes inside the domain must be high
enough to generate sufficient supercoiling to halt tran-
scription before gyrase binds. We propose that mRNA
smFISH of neighboring genes, carefully chosen for expres-
sion levels and to lie within a single supercoiling domain,
would be an accurate assessment of whether correlation
of transcription bursts occurs in E. coli.

A structural level of gene regulation

Negative feedback has been proposed to be an impor-
tant factor in controlling the stochastic nature of the
biochemical reactions that take place in gene networks
[59, 60]. Given that a transcription event of any gene inside
the same supercoiling domain will increase the positive
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supercoiling felt by all genes inside the domain suggests,
there is a higher level of negative regulation at the struc-
tural level for bacterial genomes. Every gene within the
same domain would essentially negatively regulate the
other genes inside that domain. This can be observed in
Fig. 9, where the expression level of genes inside the same
domain increase when a highly expressed gene inside the
domain is inhibited. Such an effect could be essential for

the proper stoichiometry of the gene products.

Having a built-in regulation network inside of the cell
would help ensure the proper expression of certain genes
without requiring extra energy for the production of tran-
scription regulation factors specific for different genes.
In this way, the expression level of genes in the same
supercoiling domain would act as an intrinsic regulatory
mechanism, providing yet another reason why the rela-
tive ordering of the chromosome is important. Such an
effect would have implications in understanding the ori-
gin and widespread evolutionary conservation of operonal

genome structure in Bacteria and Archaea.
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