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Kinematic difference between a biological
cell and an artificial vesicle in a strong DC
electric field – a “shell” membrane model
study
Hui Ye

Abstract

Background: Cellular biomechanics can be manipulated by strong electric fields, manifested by the field-induced
membrane deformation and migration (galvanotaxis), which significantly impacts normal cellular physiology.
Artificial giant vesicles that mimic the phospholipid bilayer of the cell membrane have been used to investigate
the membrane biomechanics subjected to electric fields. Under a strong direct current (DC) electric field, the
vesicle membrane demonstrates various patterns of deformation, which depends on the conductivity ratio
between the medium and the cytoplasm. The vesicle exhibits prolate elongation along the direction of the
electric field if the cytoplasm is more conductive than the medium. Conversely, the vesicle exhibits an oblate
deformation if the medium is more conductive. Unlike a biological cell, artificial vesicles do not migrate in the
strong DC electric field.
To reconcile the kinematic difference between a cell and a vesicle under a strong DC electric field, we proposed
a structure that represents a low-conductive, “shell-like” membrane. This membrane separates the extracellular
medium from the cytoplasm. We computed the electric field, induced surface charge and mechanical pressure
on the fixed membrane surface. We also computed the overall translational forces imposed on the structure for a
vesicle and a cell.

Results: The DC electric field generated a steady-state radial pressure due to the interaction between the
local electric field and field-induced surface charges. The radial pressure switches its direction from “pulling”
to “compressing” when the medium becomes more conductive than the cytoplasm. However, this switch can
happen only if the membrane becomes extremely conductive under the strong electric field. The induced surface
charges do not contribute to the net translational force imposed on the structure. Instead, the net translational
force generated on the shell structure depends on its intrinsic charges. It is zero for the neutrally-charged, artificial
vesicle membrane. In contrast, intrinsic charges in a biological cell could generate translational force for its movement
in a DC electric field.

Conclusions: This work provides insights into factors that affect cellular/vesicle biomechanics inside a strong DC
electric field. It provides a quantitative explanation for the distinct kinematics of a spherical cell verses a vesicle
inside the field.
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Background
Cellular biomechanics can be manipulated by strong
electric fields. For example, undulation can be induced
on a poorly conductive membrane [1] by an electric
field. Tension and poration can be generated in the cell
membranes by a microelectrode close to a cell [2]. As a
consequence, the cell membrane undergoes geometrical
changes. Strong direct current (DC) electric fields cause
deformation in the cell membrane with predicable pat-
terns [3, 4]. Stem cells derived from human adipose
tissue elongated inside a DC electric field, in a direction
that is perpendicular to the field [5]. Electric field-
induced mechanical signals can be transferred into the
biological system and cause a diversity of biological re-
sponses, including cell proliferation and apoptosis,
hypertrophy (increased cell size), extracellular matrix re-
modeling, and DNA/RNA synthesis [6].
A DC electric field can also cause cell migration,

which has significant impact on normal cellular physi-
ology. The first observation that cells can migrate inside
an applied electric field, or galvanotaxis, was reported
nearly a century ago [7]. It has been suggested that
mechanic forces generated on the cell could be partially
responsible for cell migration in the electric field [8].
Cell electrophoresis is a method for estimating the sur-
face charge of a cell by looking at its rate of movement
in a DC electrical field [9]. It has been widely used for
the characterization of the surface properties of the
membrane, as well as for the separation of uniform cell
subpopulations in a cell mixture [9]. In addition, elec-
tric fields are used for axonal guidance [10, 11], and mi-
gration of stem cells [12] or neurons within neural
networks [13].
To investigate the cellular biomechanics under electric

fields, investigators use artificially generated giant vesicles,
which mimic the phospholipid bilayer in the cell membrane
[14, 15]. These vesicles are usually formed with neutral
molecules including L-a-phosphatidylcholine [15–17].

Similar to biological cells, vesicles deformed in a very
strong DC field [16]. Vesicles exposed to the DC electric
pulses can be deformed into elliptical [18] or cylindrical
shapes [15]. Deformation of the vesicle depends on the
“conductivity ratio” between the cytoplasm and the extra-
cellular medium. The vesicle elongates in the field direc-
tion along its axis (prolate) if the cytoplasmic conductivity
is higher than the medium. Conversely, the vesicle
shortens (oblate) in the field direction if the medium is
more conductive. Theoretical works have been proposed
to investigate this interior-to-exterior conductivity ra-
tio-dependent membrane deformation, using analytical
[15, 19, 20] or numerical methods [21–23]. Interestingly,
vesicle migration has not been observed in the strong DC
electric field (2.0 Kv/cm), despite the observed electropor-
ation and pore formation on the membrane [16].
We use a modeling approach to reconcile the kine-

matic difference between a biological cell and a vesicle
under a DC electric field, with a “shell-like” membrane
structure that separates the extracellular medium from
the cytoplasm. We analyzed the biomechanics of this 3D
structure by computing the steady-state pressure and
forces imposed on the fixed membrane surface by the
DC electric field. The model confirms the impact of the
conductivity ratio on the buildup of the electric pressure
on the membrane. The model suggests that the kine-
matic difference between the vesicle and the biological
cell inside a DC electric field can be explained by the
lack of charged molecules in the vesicle membrane.

Methods
“Shell model’ of a spherical vesicle/cell in a DC electric
field
Figure 1 illustrates the configuration of a modeled
vesicle/cell inside the extracellular medium (0#). The
model contains a spherical membrane shell (1#) and
intracellular cytoplasm (2#). The center of the sphere is
at point O. To simplify calculations, we assume that

Fig. 1 The spherical vesicle/cell model and the spherical coordinate system (r, θ, ϕ). The vesicle/cell model includes three homogenous, isotropic
regions: the extracellular medium, the membrane, and the cytoplasm. The axis of the electric field overlaps with the OZ axis
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each modeled region is electrically homogenous and
isotropic. The dielectric permittivities and the conduct-
ivities in the three regions are ε0, ε1, ε2 and σ0, σ1, σ2,
respectively. The inner and outer radii of the membrane
are R_ and R+, respectively. The membrane thickness is
d = R+-R_. The cell is exposed to a uniform external

field E
!¼ EZ

!
, where Z

!
is the unitary vector in the dir-

ection of the external field. Similar model configurations
have been used to study the bioelectricity of cells under
electromagnetic field exposure [24–26].

Model parameters
Table 1 summarizes the parameters for the model,
which are chosen from previous publications [27, 28].
These parameters include geometrical and electrical pa-
rameters of the cell and the medium. The electric field
intensity was 200,000 V/m, sufficient to deform the cell
membrane [15, 16].

Equations and boundary conditions
Expression of electric potentials in the extracellular
medium, the membrane, and the cytoplasm are obtained
by solving Laplace’s equation [29] with appropriate
boundary conditions

∇2V ¼ 0 ð1Þ

Several boundary conditions are considered in the
model: (1) Across the boundary of two different media,
electric potential is continuous; (2) Across the boundary
of two different media, the normal component of the
current density is continuous. To account for the dielec-
tric permittivity of the material, “complex conductivity”,
defined as S = σ + jωε, was used [26, 30]. ω is the angular
frequency. It is zero for the DC electric field. j ¼ ffiffiffiffiffiffi

−1
p

is
the imaginary unit. Therefore, across the extracellular
medium/membrane interface (0#1#),

S0E0r−S1E1r ¼ 0 ð2Þ
Across the membrane/cytoplasm interface (1#2#),

S1E1r−S2E2r ¼ 0 ð3Þ
where S0 = σ0 + jωε0 , S1 = σ1 + jωε1 , S2 = σ2 + jωε2. (3)
Presence of the vesicle/cell in the electric field does not
perturb field distribution at an infinite distance; and (4),
the electric potential inside the vesicle/cell is finite.
In spherical coordinates (r, θ, ϕ), expressions of elec-

tric fields are given by

E
*¼ −∇V ¼ −

∂V
∂r

;
1
r
∂V
∂θ

;
1

r sinθ
∂V
∂φ

� �
ð4Þ

Surface charge distribution and mechanical pressure on
the “shell”
Under electromagnetic exposure, free charges accumu-
late on the interface of the two inhomogeneous media
[31]. At the 0#1# interface (r = R+), the surface charge

density is ρs01 ¼ n!• ε1 E
!

1−ε0 E
!

0

� �
or

ρs01 R; θ;ϕð Þ ¼ ε1E1r−ε0E0r ð5Þ
At the 1#2# interface (r = R−), the surface charge density

is ρs12 ¼ n!• ε2 E
!

2−ε1 E
!

1

� �
or

ρs12 R; θ;ϕð Þ ¼ ε2E2r−ε1E1r; ð6Þ
where n! denoted the outward unit normal vector.
Interaction between the free charges and the electric

field produces electric pressure, whose radial component
can be calculated as the product of the charge density
and the averaged electric field on both sides of the
interface surface [29]. Quantitatively significant pres-
sure produced by high-intensity electric field could
cause cell membrane deformation [32]. On the 0#1#
interface (r = R+), the radial pressure is

Table 1 Model parameters

Parameters Standard value Lower limit Upper limit

Extracellular conductivity (σ0, S/m) 0.3 0.01 5

Extracellular dielectric permittivity (ε0, As/Vm) 6.4 × 10−10 - -

Membrane conductivity (σ1, S/m) 1.2 × 10−6 5 × 10−7 5.0 × 10−2

Cell membrane dielectric permittivity (ε1, As/Vm) 4.4 × 10−11 1.8 × 10−11 8.8 × 10−11

Cytoplasmic conductivity (σ1, S/m) 1.2 - -

Cytoplasmic dielectric permittivity (ε2, As/Vm) 6.4 × 10−10 3.5 × 10−10 7.0 × 10−10

Cell radius (R, μm) 10 1 100

Membrane thickness (d, nm) 5 3 7

Electric field intensity (E, V/m) 200,000 –
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ρr01 ¼
1
2
ðE0r þ E1rÞρs01 ð7Þ

On the 1#2# interface (r = R−), the radial pressure is

ρr12 ¼
1
2

E1r þ E2rð Þρs12 ð8Þ

Since the membrane is thin and uncompressible, the
net radial electric stress is computed as [33]

Pr ¼ Pr01 þ Pr12 ð9Þ

Results
Analytical solutions for the electric fields and surface
charges
Laplace’s equation was solved with boundary conditions
(1–4) to yield the expression of the electric potentials
(Additional file 1). The potential distributions in the
three regions are

V 0 ¼ 1
r2

3S0 2S1 þ S2ð ÞR6
þ þ 3S0 S1−S2ð ÞR3

þR
3
−

2 S1−S0ð Þ S1−S2ð ÞR3
−− S1 þ 2S0ð Þ 2S1 þ S2ð ÞR3

þ
þ R3

þ
r2

−r

 !
E cosθ

ð10:1Þ

V 1 ¼
3S0R3

þ r 2S1 þ S2ð Þ þ S1−S2ð Þ R3
−
r2

h i
2 S1−S0ð Þ S1−S2ð ÞR3

−− S1 þ 2S0ð Þ 2S1 þ S2ð ÞR3
þ
E cosθ

ð10:2Þ

V 2 ¼
9S0S1R3

þr
2 S1−S0ð Þ S1−S2ð ÞR3

−− S1 þ 2S0ð Þ 2S1 þ S2ð ÞR3
þ
E cosθ

ð10:3Þ

We further calculate the electric field distribution in the
extracellular space, the shell membrane, and the cyto-
plasm using Eq. (4). The expressions for the electric field
around the cell, in the extracellular medium (0#) are:

E0r ¼ 1−
2R3

þ
r3

R3
− S0 þ 2S1ð Þ S1−S2ð Þ þ R3

þ S0−S1ð Þ 2S1 þ S2ð Þ
2R3

− S0−S1ð Þ S1−S2ð Þ þ R3
þ 2S0 þ S1ð Þ 2S1 þ S2ð Þ

" #
E cosθ

ð11:1Þ

E0θ ¼ − 1þ R3
þ
r3

R3
− S0 þ 2S1ð Þ S1−S2ð Þ þ R3

þ S0−S1ð Þ 2S1 þ S2ð Þ
2R3

− S0−S1ð Þ S1−S2ð Þ þ R3
þ 2S0 þ S1ð Þ 2S1 þ S2ð Þ

" #
E sinθ

ð11:2Þ

E0φ ¼ 0 ð11:3Þ

The electric fields inside the membrane (1#) are:

E1r ¼
3R3

þ
r3

S0 2R3
− −S1 þ S2ð Þ þ r3 2S1 þ S2ð Þ� �

2R3
− S0−S1ð Þ S1−S2ð Þ þ R3

þ 2S0 þ S1ð Þ 2S1 þ S2ð ÞE cosθ

ð12:1Þ

E1θ ¼ −
3R3

þ
r3

S0 R3
− S1−S2ð Þ þ r3 2S1 þ S2ð Þ� �

2R3
− S0−S1ð Þ S1−S2ð Þ þ R3

þ 2S0 þ S1ð Þ 2S1 þ S2ð Þ E sinθ

ð12:2Þ
E1φ ¼ 0 ð12:3Þ

The electric fields inside the cytoplasm (2#) are:

E2r ¼
9S0S1R3

þ
2R3

− S0−S1ð Þ S1−S2ð Þ þ R3
þ 2S0 þ S1ð Þ 2S1 þ S2ð ÞE cosθ

ð13:1Þ

E2θ ¼ −
9S0S1R3

þ
2R3

− S0−S1ð Þ S1−S2ð Þ þ R3
þ 2S0 þ S1ð Þ 2S1 þ S2ð Þ E sinθ

ð13:2Þ
E1φ ¼ 0 ð13:3Þ

From Eq. (5), the electrically-induced charge density
on the 0#1# interface is (Additional file 2)

ρs01 R; θ;φð Þ ¼ −
3 2R3

− S1−S2ð Þ−R3
þ 2S1 þ S2ð Þ� �

2R3
− S0−S1ð Þ S1−S2ð Þ þ R3

þ 2S0 þ S1ð Þ 2S1 þ S2ð Þ S1ε0−S0ε1ð ÞE cosθ

ð14:1Þ
One the 1#2# interface (Additional file 3)

ρs12 R; θ;φð Þ ¼ −
9R3

þS0
2R3

− S0−S1ð Þ S1−S2ð Þ þ R3
þ 2S0 þ S1ð Þ 2S1 þ S2ð Þ S2ε1−S1ε2ð ÞE cosθ

ð14:2Þ
Figure 2 illustrates the surface charge distributions on

these two interfaces, which depend on the orientation of
the cell to the electric field (i.e., cos θ term). The dens-
ities of the induced surface charges are also functions of
the electric properties of the medium, the membrane,
and the cytoplasm. The two pole areas carry the greatest
density of induced charges. Since the cos θ term pre-
sents in both Eqs. (14.1) and (14.2), charge distribution
on both 0#1# interface (Fig. 2a) and 1#2# interface
(Fig. 2b) are similar. However, charges carried by the
two interfaces have different polarities at the same lo-
cation (latitude and longitude).
Surface charge density is a function of the field inten-

sity. We compute the maximal surface charge (at θ=0)
with parameters presented in Table 1 (E = 200,000 V/m,
σ0 = 0.3 S/m and σ2 = 1.2 S/m). The induced charge
density is −0.025 C/m2 on the 0#1# interface, and is
0.025 C/m2 on the 1#2# interface. Those values are
comparable to the charge density carried by the intrinsic
membrane proteins [8, 34].
Since induced charges are restricted on the membrane

surface [35], the net induced charge should be zero on
both the 0#1# and 1#2# interfaces. This could be con-
firmed by integrating the surface charge density over the
whole surface area.
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Qs01 ¼ ∬
θ;ϕ

ρs01da01 ¼ ∬
θ;ϕ

ρs01R
2
þ sinθdθdϕ ¼ 0

ð15:1Þ

Qs12 ¼ ∬
θ;ϕ

ρs12da12 ¼ ∬
θ;ϕ

ρs12R
2
− sinθdθdϕ ¼ 0

ð15:2Þ

Here, da⌢
01

¼ Rþ2sin θdθdϕ r⌢ is the surface element on

the 0#1# interface and da
_

12
¼ R2 sin θdθdϕ r

_
is the sur-

face element on the 12# interface in the r
_

direction.

Steady state radial pressure
Mechanical pressure can be generated when the electric
field interacts with the induced surface charges [32]. The

pressure on the radial r
_

direction is essential for cytoskel-
etal compression and extension [32]. On the 0#1# inter-
face, the steady state radial pressure is (Additional file 2)

Pr01 ¼ −
9E2ðS0 þ S1Þ½Rþ

3ð2S1 þ S2Þ−2R3ðS1−S2Þ�
2

2½2R3ðS0−S1ÞðS1−S2Þ þ Rþ
3ð2S0 þ S1Þð2S1 þ S2Þ�

2ðS0ε1−S1ε0Þcos2θ

ð16:1Þ

On the 1#2# interface, it is expressed as (Additional file 3)

Pr12 ¼ −
81E2Rþ

6
S20ðS1 þ S2Þ

2½2R3ðS0−S1ÞðS1−S2Þ þ Rþ
3ð2S0 þ S1Þð2S1 þ S2Þ�

2ðS1ε2−S2ε1Þcos2θ

ð16:2Þ
Figure 3 illustrates the radial pressure distribution

on both sides of the “shell” membrane. The chosen
parameters are σ0 = 0.3 S/m, σ2 = 1.2 S/m and
E = 200,000 V/m. The pressure on the outer membrane
surface compresses the membrane (Fig. 3a), while the
pressure on the inner membrane surface stretches and
expands the membrane (Fig. 3b). On both membrane
interfaces, the maximal pressure was generated on the
two poles (θ = 0 or π).

Dependency of net radial pressure on medium
conductivity
We calculate the net pressure on the fixed membrane
structure (Eq. (9), also see Additional file 4). For
E = 200,000 V/m, the maximal magnitude of the pressure
is 3 × 104 N/m2. This computed result is significant in
comparison with those used for membrane deformation,
including atomic force microscopy (AFM), optical
trapping, micropipette aspiration and magnetic bead
mocrorheology (twisting and pulling) [6].
Previous research indicates that the compressing/

pulling pressure on the cell membrane could change its

Fig. 2 Electrically-induced surface charge distribution on the a medium/membrane interface (ρs01) and b membrane/cytoplasm interface (ρs12).
Membrane thickness is exaggerated to show the inner and outer membrane interfaces. The plot demonstrates the geometrical pattern of the
induced surface charge distribution in the DC electric field. The orientation of the shell structure to the field is the same as that shown in Fig. 1.
The color represents the amount of the charge density (C/m2) calculated with σ0 = 0.3 S/m and σ2 = 1.2 S/m and E = 200,000 V/m
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direction, depending on the ratio between the conduct-
ivities of the medium and the cytoplasm. The pressure
is pulling if the cytoplasm is more conductive and com-
pressing if the medium is more conductive [14, 19]. We
used this observation to validate the model by varying
the conductivity of the medium and computing the net
radial pressure. Figure 4 illustrates that the direction of
the net radial pressure switches from pulling to com-
pressing when the medium conductivity suppresses
cytoplasmic conductivity. In Fig. 4a, σ0 = 0.3 S/m,
σ1 = 5 × 10−3 S/m and σ2 = 1.2 S/m, the mechanic pres-
sure pulls the membrane outwardly. In Fig. 4b,
σ0 = 4 S/m, σ1 = 5 × 10−3 S/m and σ2 = 1.2 S/m, the
pressure compresses the membrane.
Membrane conductivity could significantly increase in

a strong electric field due to electroporation [25, 36].
We test the effect of membrane conductivity on net
radial pressure at various conductivity ratio (σ0/σ2).

When the membrane conductivity remains low
(σ1 < 5 × 10−5 S/m), the net radial pressure is always
pulling, an indication of prolate elongation along the
electric field. Varying medium conductivity and σ0/σ2
ratio could not cause a switch in the sign of the com-
pressing force. In contrast, when the membrane con-
ductivity becomes high (σ1 > 5 × 10−4 S/m), the net
radial pressure can switch from pulling (when σ0/
σ2 < 1) to compressing (when σ0/σ2 > 1) in the field dir-
ection (Fig. 5), indicating an oblate shape.

Translational forces produced by the interaction between
the induced surface charges and the local electric fields
In order to calculate the forces related to the transla-
tional motion of the cell in the electric field, we need to
first express the electric field in (x, y, z) directions using
a transformation matrix.

Fig. 3 Distribution of the radial pressure (arrows) on the a medium/membrane interface (Pr01) and on the b membrane/cytoplasm interface
(Pr12). Color represents surface charges as defined in Fig. 2. Parameters are the same as in Fig. 2. Bottom: zoom-in views
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Eox

Eoy

Eoz

2
4

3
5 ¼

sinθ cosϕ cosθ cosϕ − sinϕ
sinθ sinϕ cosθ sinϕ cosϕ

cosθ − sinθ 0

2
4

3
5 Eor

Eoθ

Eoϕ

2
4

3
5
ð17Þ

Immediately outside the cell vicinity, we obtained
(Additional file 5)

E0x ¼ −3E
R3
− S0 þ 2S1ð Þ S1−S2ð Þ þ R3

þ S0−S1ð Þ 2S1 þ S2ð Þ
2R3

− S0−S1ð Þ S1−S2ð Þ þ R3
þ 2S0 þ S1ð Þ 2S1 þ S2ð Þ sinθ cosθ cosφ

ð18:1Þ

E0y ¼ −3E
R3
− S0 þ 2S1ð Þ S1−S2ð Þ þ R3

þ S0−S1ð Þ 2S1 þ S2ð Þ
2R3

− S0−S1ð Þ S1−S2ð Þ þ R3
þ 2S0 þ S1ð Þ 2S1 þ S2ð Þ sinθ cosθ sinφ

ð18:2Þ

E0z ¼
3E

−S1 2R3
− S1−S2ð Þ−R3

þ 2S1 þ S2ð Þ� �
cos2 θ þ S0 R3

− S1−S2ð Þ þ R3
þ 2S1 þ S2ð Þ�sin2 θ�

2R3
− S0−S1ð Þ S1−S2ð Þ þ R3

þ 2S0 þ S1ð Þ 2S1 þ S2ð Þ
ð18:3Þ

To test if the induced surface charges contribute to
the buildup of the translational force, we integrated the
translational pressure (x, y and z directions) on the
whole spherical surface.

Fx ρs ¼ ∬
θ;ϕ

Eoxqρs01da ¼ 0 ð19:1Þ

Fy ρs ¼ ∬
θ;ϕ

Eoyqρs01da ¼ 0 ð19:2Þ

Fig. 4 Net radial pressure on the cell membrane under a strong DC electric field. a The pressure pulls the membrane along the z-axis when
σ0 = 0.3 S/m and σ2 = 1.2 S/m; b The pressure compresses the membrane along the z-axis when σ0 = 1.2 S/m and σ2 = 0.3 S/m. Membrane
conductivity is σ1 = 5 × 10−3 S/m in this plot
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Fz ρs ¼ ∬
θ;ϕ

Eozqρs01da ¼ 0 ð19:3Þ

Here, q is the elementary charge. Interaction between
the induced surface charges and the local electric fields
generates zero translational force. Therefore, this type of
surface charge is not involved in the translational move-
ment of the vesicle/cell inside a strong DC electric field.

Translation forces generated by the interaction between
the electric field and the intrinsic charges
Under normal physiological conditions, cell membrane
is non-neutral due to the presence of the charged lipid
head groups embedded inside the membrane [37]. The
accumulation of anionic phospholipids (i.e., phosphati-
dylserine and phosphatidylinositol) produces an inten-
sive electric field (105 V/cm), which can strongly attract
ions, cationic proteins and peptides [38, 39]. This is a
biophysics mechanism essential for protein targeting
and intracellular signaling. Translation forces (Additional

file 6) can be generated for a biological cell when the
electric field interacts with the intrinsic surface charges
(designated as ρp).

Fx�ρp ¼ ∬
θ;φ

Eoxρpqda

¼ ∬
θ;φ

−3E
R3
− S0 þ 2S1ð Þ S1−S2ð Þ þ R3

þ S0−S1ð Þ 2S1 þ S2ð Þ
2R3

− S0−S1ð Þ S1−S2ð Þ þ R3
þ 2S0 þ S1ð Þ 2S1 þ S2ð Þ

2
4

sinθ cosθ cosφ�ρpqR2
þ sinθdθdφ

¼ 0

ð20:1Þ
Fy�ρp ¼ ∬

θ;φ

Eoxρpqda

¼ ∬
θ;φ

−3E
R3
− S0 þ 2S1ð Þ S1−S2ð Þ þ R3

þ S0−S1ð Þ 2S1 þ S2ð Þ
2R3

− S0−S1ð Þ S1−S2ð Þ þ R3
þ 2S0 þ S1ð Þ 2S1 þ S2ð Þ

2
4

sinθ cosθ sinφ�ρpqR2
þ sinθdθdφ

¼ 0

ð20:2Þ

Fz�ρp ¼ ∬
θ;φ

Eozρpqda

¼ ∬
θ;φ

3E
−S1 2R3

− S1−S2ð Þ−R3
þ 2S1 þ S2ð Þ� �

cos2 θ þ S0 R3
− S1−S2ð Þ þ R3

þ 2S1 þ S2ð Þ�sin2 θ�
2R3

− S0−S1ð Þ S1−S2ð Þ þ R3
þ 2S0 þ S1ð Þ 2S1 þ S2ð Þ

2
4

3
5ρpqR2

þ sinθdθdφ

¼ 4πR2
þρpE ¼ QpE

ð20:3Þ

Fig. 5 Dependency of the radial pressure on the conductivities of the medium, the cytoplasm, and the membrane. When membrane
conductivity (σ1) is low, the radial pressure is always pulling. When membrane conductivity is high (>5 × 10−4 S/m), the radial pressure
switches from pulling (when σ0/σ2 < 1) to compressing (when σ0/σ2 > 1). σ2 = 1.2 S/m in this plot
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Therefore, translational force generated on a cell is
proportional to the net intrinsic charge carried by the
cell itself (Qp), as suggested previously [40]. If we assume
the intrinsic charge density to be 3.6 × 104 electronic
charges/square micron [8] and cell radius to be 10 μm,
we obtain Fzρp ¼ 1:6� 10−6N , a force comparable to

that generated by migrating or contracting cells (10−9 N-
10−5 N in [6]).

Discussion
Understanding vesicle biomechanics under electric field
exposure brings valuable insights into the behavior of
biological cells, since both share the same structure
components, the enclosing bilipid membrane. However,
the overall kinematics of the vesicles and cells are dif-
ferent in a strong DC electric field. Vesicles demon-
strate deformation in the strong DC electric field, while
cells demonstrate both deformation and migration.
This work provides a three-dimensional modeling of

the interaction between a strong DC electric field and
the low-conductive, capacitive shell membrane of a
cell/vesicle. It provides a set of analytical solutions for
the surface charges and electric field distributions. It
also provides mechanical analyses on the fixed mem-
brane surface, including the radial pressure for mem-
brane deformation and the translational forces for
movement. The distribution of the induced surface
charges depends on the orientation of the electric
field to the structure. When the membrane becomes
significantly conductive in the strong electric field,
the directionality of the radial pressure on the mem-
brane can switch between pulling and compressing,
depending on the cytoplasm/medium conductivity ra-
tio. Finally, translational force can be built on the
structure for migration via its interaction with the in-
trinsic charges on the membrane, rather than with the
induced electric charges. The model thus reconciles
the kinematic difference between a cell (deformation
and migration) and a vesicle (deformation only) under
a strong DC electric field.

Surface charges induced by the externally applied field
on the membrane
Analytical expressions were given for the induced sur-
face charges on both sides of the membrane in a DC
electric field. On a single interface, the charges are sep-
arate by their polarities, making the spherical interface
an equivalent electric dipole (Fig. 2, also see [41]). For a
200,000 V/m electric field, the surface charges on the
poles can reach 0.025 C/m2, a value that is several folds
greater than those charges carried by the cell itself (i.e.,
5.76 × 10−3 C/m2 in isolated toad bladder epithelial
cells in [8]). The biological effects of such charge

accumulation can include an extra voltage to be super-
imposed on the membrane [25, 26, 42], alteration of
meta-stable membrane structure [43], or electropor-
ation of the membrane [44]. More importantly, mem-
brane surface charges are essential in producing electric
compressive force for membrane deformation [22]. The
static radial pressure on the membrane surface is pro-
duced by the interaction between the local electric field
and the induced surface charges [45], which can be a
complicated function of both the electric/geometrical
properties of the shell and the properties of the field
(i.e., Eqs. (14.1) and (14.2)).

Impact of conductivity ratio on net radial pressure
Experimentally, it has been shown that vesicle deform-
ation inside an electric field is dependent on the con-
ductivities of both the suspending fluid and the interior
cytoplasm [46, 47]. Our model supports this observa-
tion, since increasing the medium conductivity could
induce the switching of the radial pressure from pulling
(Fig. 4a) to compressing (Fig. 4b). Furthermore, this
conductivity ratio-dependent switch can only happen
when the membrane conductivity is significantly in-
creased (Fig. 5). Considering that the field intensity is
200,000 V/m in this study, a value that is sufficient for
vesicle deformation [15] and membrane poration [16],
it is likely the membrane conductivity could increase
prominently.
Previous works have demonstrated that membrane

conductance plays a significant role in inducing trans-
membrane potential and vesicle shape transition. Using
a zero-thickness model of membrane and a hybrid nu-
merical (immersed boundary and immersed interface)
method, Hu et al. [22] found that increase in the mem-
brane conductance is required for the vesicle to remain
oblate shape in a DC electric field. Using a similar zero-
thickness and numerical simulation, McConnell et al.
[23] found that the vesicle only experiences oblate steady
deformation when σ0/σ2 > 1 and membrane conduct-
ance is high. In these zero-thickness membrane model,
transmembrane potential is calculated as a “jump” of po-
tential, and the boundary condition of potential continu-
ity across the two media is invalid. Our work uses a
more biologically relevant representation of the “shell-
like” membrane (approximately 5 nm in thickness), since
the physical features (i.e., thickness and radius) of the
membrane plays a significant role in electric field distri-
bution, membrane polarization [45], and membrane
biomechanics under electromagnetic field [32, 33].
Therefore, the “shell” model not only allows potential
continuity across the membrane surface (boundary
condition 1), but also allows the calculation of the
membrane charges on both side of the membrane. Our
analytical solutions support these previous modeling
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results. When σ0/σ2 < 1, the radial pressure is consist-
ently pulling (prolate), regardless if the membrane con-
ductivity is high. In contrast, when σ0/σ2 > 1, the radial
pressure is pulling when the membrane conductance is
low, and compressing (oblate) when membrane con-
ductance is high (σ1 > 5 × 10−4 S/m).

Differential migration kinematics between a vesicle and
a cell
Our model is successful in reconciling the kinematic
difference between a spherical vesicle and a cell with
similar shape in a strong DC electric field.
We found that interaction between the induced sur-

face charges and local electric fields produces minimal
translational force (Eq. 19.1 to 19.3). Using a method
that treated the polarized particle as a dipole, Jones also
ound that particles should experience zero net transla-
tion force in an even DC field [41] if only the induced
electric charges are considered. This could easily be the
case for an artificial vesicle, which is made with neutral
molecules (L-a-phosphatidylcholine [17]) and its intrin-
sic surface charges are assumed to be zero. For a bio-
logical cell, intrinsic charges is regarded important in its
cathodal galvanotaxis [48]. In a surprising simple form,
we found the translational force is proportional to the
overall net charge carried by the cell (Eq. 20.3). It is rea-
sonable to assume that an evenly distributed intrinsic
charge pattern on the cell membrane could produce a
zero net radial pressure (Eq. 9). Therefore, the intrinsic
charges could contribute to the translational motion of
the cell, but not membrane deformation.
The model provides several interesting hypotheses re-

garding vesicle and cell kinematics. First, since the in-
trinsic charges are only associated with cell migration
(but not membrane deformation) in the strong DC elec-
tric field, manipulations of these intrinsic charges should
change cell mobility (but not deformation) in the field.
Methods includes changing pH value [40] and applying
calcium or magnesium to bind the surface charges [8].
Second, partially charged vesicles could be made to
mimic cell migrations in the strong DC electric field.
These vesicles could be made with lipid mixtures of
phosphatidylcholine and phosphatidylglycerol or phos-
phatidylcholine and phosphatidylserine [15].
It is possible that the distribution of the intrinsic

charge will be altered by the electric field [49]. However,
if the polarity of the net charge (Qp) is not affected by
their redistribution, direction of the translations force
should not be altered (Eq. 20.3). In supporting this
model prediction, it was found that the re-distribution
of the charged cell surface proteins did not alter the
direction of galvanotaxis [49].
It shall be noted that if the intrinsic surface proteins

are geometrically inhomogeneous, they may play an

important role in cell deformation under a DC field ex-
posure. For example, interactions between the charged
protein on the outer hair cells and a transcellular oscil-
lating electric field can cause cell vibration, leading to
the deformation of the cell [50]. If one knows the
detailed distribution of the charged surface proteins, it
is possible to use Eq. (8) to deduce the local pressure
generated by the intrinsic charges.

Future directions
Several assumptions have been made to formulate the
present model for computational simplicity. First, the
model does not represent the geometrical complexity in
a real biological cell. Second, the model assumes both
the medium and cytoplasmic environment are homoge-
neous. While this may be the case for vesicles, it could
be unrealistic for cells [51, 52]. Third, the model does
not consider mechanical factors such as hydrodynamic
pressure around the structure [14] and membrane elasti-
city [4]. Finally, membrane polarization [53] in the
strong DC electric field allows for calcium influx, which
could alter membrane shape via actin polymerization/
depolymerization and actomyosin contractility [54].
Electroporation could also alter local electric fields [55]
by allowing ion exchange through the pores, which in
turn alter vesicle shapes. Future work should consider
multi-compartment modeling or finite element meshes
[56–58] to represent the detailed anatomic complexity
of a biological cell. More complicated simulation
should consider numerical methods, whose accuracy is
subjected to be validated by analytical works including
this one.

Conclusions
The paper studies cellular biomechanics under a strong
DC electric field exposure, by simulating the membrane
with a “shell-like” structure. It provides the analytical so-
lutions for the pressure and translational force that
might contribute to the “shell” deformation and move-
ment, respectively. The model provides a quantitative in-
terpretation for various vesicle deformation scenarios
inside the medium with different conductivities. It also
explains the kinematic differences between a vesicle and
a spherical cell inside the strong DC electric field.
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Abbreviations
Fxρs ; Fyρs ; Fyρs : Translational force (N) applied on the membrane in the
Cartesian coordinate system x!; y!; z!	 


due to the interaction between
induced surface charges and the local electric field; Fxρp ; Fyρp ; Fyρp :
Translational force (N) on the membrane in the Cartesian coordinate system
x!; y!; z!	 


, due to the interaction between the intrinsic membrane charges
and the local electric field; E: Intensity of externally-applied electric field (V/m);
E0r, E0θ, E0ϕ: Electric field intensity in the medium (V/m) in the spherical
coordinate system r!; θ

!
; ϕ!

� �
; E0x, E0y, E0z: Electric field intensity in the

medium (V/m) in the Cartesian coordinate system x!; y!; z!	 

; E1r, E1θ,

E1ϕ: Electric field intensity in the membrane (V/m) in the spherical
coordinate system r!; θ

!
; ϕ!

� �
; E1x, E2y, E1z: Electric field intensity inside the

membrane (V/m) in the Cartesian coordinate system x!; y!; z!	 

; E2r, E2θ,

E2ϕ: Electric field intensity in the cytoplasm (V/m) in the spherical coordinate
system r!; θ

!
; ϕ!

� �
; E2x, E2y, E2z: Electric field intensity in the cytoplasm

(V/m) in the Cartesian coordinate system x!; y!; z!	 

; Pr: Net radial pressure

on the membrane (N/m2); Ps12: Radial pressure on the membrane/cytoplasm
interface (N/m2); q: Elementary charge, q = 1.60217662 × 10−19 C; Qs01:
Amount of net induced surface charges on the medium/membrane
interface (C); Qs01: Radial pressure on the medium/membrane interface
(N/m2); Qs12: Amount of net induced surface charges on the membrane/
cytoplasm interface (C); ρp: Intrinsic charge density on the cell membrane
(C/m2); ρs01: Induced surface charge density on the medium/membrane
interface (C/m2); ρs12: Induced surface charge density on the membrane/
cytoplasm interface (C/m2)
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