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Abstract

and overall behavior of the contractions are concerned.

Background: We are exploring the viability of a novel approach to cardiocyte contractility assessment based on
biomechanical properties of the cardiac cells, energy conservation principles, and information content measures.
We define our measure of cell contraction as being the distance between the shapes of the contracting cell,
assessed by the minimum total energy of the domain deformation (warping) of one cell shape into another. To
guarantee a meaningful vis-a-vis correspondence between the two shapes, we employ both a data fidelity term
and a regularization term. The data fidelity term is based on nonlinear features of the shapes while the
regularization term enforces the compatibility between the shape deformations and that of a hyper-elastic material.

Results: We tested the proposed approach by assessing the contractile responses in isolated adult rat cardiocytes
and contrasted these measurements against two different methods for contractility assessment in the literature.
Our results show good qualitative and quantitative agreements with these methods as far as frequency, pacing,

Conclusions: We hypothesize that the proposed methodology, once appropriately developed and customized, can
provide a framework for computational cardiac cell biomechanics that can be used to integrate both theory and
experiment. For example, besides giving a good assessment of contractile response of the cardiocyte, since the
excitation process of the cell is a closed system, this methodology can be employed in an attempt to infer
statistically significant model parameters for the constitutive equations of the cardiocytes.

Background

Introduction

Cardiovascular research based on enzymatically disso-
ciated cardiocytes has been fundamental for the discovery
of the mechanisms that govern the heart. The use of the
cardiocyte as the basis for cardiac functionality has pro-
vided some of the most revealing information regarding
heart function. Among the many findings, it has revealed
the crucial molecular changes that occur during patholo-
gical conditions of the heart. The details regarding the
excitation-contraction coupling, calcium transient signal
(movement of the calcium ion Ca®*), gene and protein
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expression, and contractility are all important mechan-
isms and functions that can be readily studied in the iso-
lated cardiocytes at all stages of development and they
are routinely performed during research studies [1-6].
Contractility in adult cardiocytes is commonly inter-
preted as the ability of the cardiac cell to generate force
and to shorten. Some of the different methodologies
devised to study the contractile process include laser dif-
fraction [7], photodiode arrays [8], scanning ion conduc-
tance microscopy [6], and those employing microscopic
cell image analysis [9-12]. Historically the most widely
used methods have been those involving cell image analy-
sis, although all the methods show some positive and
negative characteristics that are worthy of attention.
Methods such as the scanning ion conductance micro-
scopy require elaborate and expensive equipment [6].
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This technique, combined with laser confocal micro-
scopy, is one of the few methods that has been capable
of providing a measure of cardiocyte height during
contraction. Other methods, such as light diffraction
techniques, have been applied to the study of muscle
mechanics since the nineteenth century with relatively
high reliability. Nonetheless, they are very dependent
upon several factors including the temporal resolution
of the detection system and optical artifacts [2]. The sar-
comere striation pattern analysis method has also been
used as a way to quantify contractility. This technique
can achieve high temporal resolution with the aid of
charge-coupled device line array detectors and it pro-
vides a measure of individual sarcomere lengths along
the cell [13,14]. A drawback of this method is its vulner-
ability to errors introduced by slight rotational and
translational changes that normally occur during cell
contraction [2].

Although the image analysis methods have been
widely used with relative high reliability, the results they
provide are often prone to the introduction of error due
to the aforementioned rotation or vertical and horizon-
tal displacement of the cardiocyte during contraction.
Our proposed approach aims to provide a cardiocyte
contraction analysis method that successfully captures
the full extent of the contractile behavior, while mini-
mizing the need for elaborate equipment and the effects
that the cardiocyte’s movements have on the acquired
signal.

Previous Work

A widely used video-based method to measure contrac-
tion in adult cardiocytes involves a device capable of
capturing the extent and rate of length shortening
between the cell’s ends, the so-called edge detection
method [15-17,11]. In this technique, a single video ras-
ter line oriented along the longitudinal axis of the cell
shows high contrast at the cell boundaries. These serve
as tracking points and their separation distance corre-
sponds to cell length. The method generally produces
satisfactory results and has been a broadly used
approach for measuring contractile responses of adult
cardiocytes for over twenty years [2,16]. Some practical
difficulties have been identified during the implementa-
tion of the edge detection method for measuring adult
cardiocyte contractility [2]. The changes in cardiocyte
geometry, dynamic torquing, and rotation can lead to
errors in the measurement [2,15,16,5]. Figure 1 shows
frames extracted from videos of adult cardiocytes
depicting contractions.

In a previous communication, Bazan, Torres-Barba,
Paolini and Blomgren [18] described a computational
pipeline for the comprehensive assessment of contractile
responses of enzymatically dissociated adult cardiac
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Figure 1 Frames from contracting cardiocytes. Frames extracted
from videos of adult cardiocytes depicting contractions. These are
typical rod-shaped cardiocytes isolated from an adult mammalian
heart.

myocytes. The methodology comprises the following
stages: digital video recording of the contracting cell,
edge preserving total variation-based image smoothing,
segmentation of the smoothed images, contour extrac-
tion from the segmented images, shape representation
by Fourier descriptors, and contractility assessment. The
physiologic application of the methodology was evalu-
ated by assessing the overall contraction in isolated
adult rat cardiocytes. The results demonstrated the
effectiveness of the approach in characterizing the more
appropriate, two-dimensional, shortening in the contrac-
tion process of adult cardiocytes. The authors in [18]
compared the performance of their method to that of
the aforementioned edge detection system. The method
not only provided a more comprehensive assessment of
the myocyte contraction process, but can potentially
eliminate the historical concerns and sources of errors
caused by myocyte rotation, bending, or translation dur-
ing contraction [2,9,19].

In this paper, we are exploring the viability of a novel
approach to cardiocyte contractility based on biomecha-
nical properties of the cardiac cells, energy conservation
principles, and information content measures. The pro-
posed methodology was inspired by the works of Byung-
Woo Hong et al. [20-22], School of Computer Science
and Engineering, Chung-Ang University, Seoul, Korea;
and Andrew D. McCulloch et al. [23-26], Department of
Bioengineering, University of California San Diego, La
Jolla, California.

Methods

Cardiocyte Shape Representation With Integral Kernels
We wish to retrieve the information embedded in the
shapes of a contracting cardiocyte like the ones shown
in Figure 1. In other words, we want to analyze closed
planar regions D € R?, and their boundaries (finite peri-
meters), as depicted in Figure 2(a). We will describe
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Figure 2 Cardiocyte shape representation. (a) Representation of
the cardiocyte shape by a closed planar region, D. (b) Binary
representation S of the cardiocyte shape.

these regions by binary images, Figure 2(b), composed
with a suitable class of (continuous and invertible)
image domain transformation. The binary images will be
represented by a characteristic function

1 ifxeD

S(x) = Sp(x) = {0 ifxgD, 1)

defined for x € Q C R?, with D € Q, where Q is the
rectangular image domain.

We will define the multi-scale nonlinear features R,
as the convolution of the shape S with a family of ker-
nels K, indexed by a scale 0. More specifically, 0 € R”,
K :R? x R* - R"; (x, 6) »K, (x). For convenience, we
will consider the isotropic Gaussian kernel of the form

1 |x|2
/27 exp <— 202) . ()

We will work with the non-linear features proposed
by Hong, Soatto and Vese [20], which were designed to
retain boundary information. They are given by one of
the following two expressions,

Ky (x) =

R, : L'(Q) — L'(R?),

S(x) = Ry (x]S)=S(x)(Ks * (1 — S(x))), ®)

or the symmetrized version
R, : L' () — L' (R?),
S(x) > Ry (x[S) =S (%) (Ko * (1 — S(x))) 4)
+(1=S®) (Ks xS (x)).

The shape representation for different scales using the
first (simpler) features, Eq. (3), are shown in Figure 3.

Figure 3 Cardiocyte shape features (asymmetric). Examples of
the shape features Ry (x | $) =S () (Ks * (1 - S () for (@) o =15
and (b) o = 25.

The shape representation for different scales using the
second (symmetric) features, Eq. (4), are shown in
Figure 4. Both the binary representation (S) and the
nonlinear shape features (R;) include the original
boundary information. However, the nonlinear shape
features also encode the local shape information (up to
a scale o), which is not explicitly available in the binary
representation.

These shape features have several useful properties
(for more details on these properties, please see [20]): (i)
they are very robust under the presence of noise that
gets incorporated in the segmentation process; (ii) since
their values depend on the local geometry, these features

Figure 4 Cardiocyte shape features (symmetric). Examples of the
shape features Rg (x| S) =S () (Kg * (1 -S 0 + (1 -S () (Ko * S

(x)) for (@) o = 15 and (b) o = 25.
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propagate the shape information inside and outside the
boundary; (iii) because the value of the features at a
point is a local statistic of the shape in a neighborhood
of that point, these features capture the context of the
particular shape; and (iv) these shape features are very
straightforward to compute.

Cardiocyte Contractility Assessment via Shape Matching
In this paper, the contractility analysis is done at the cel-
lular level, thereby only measuring the overall contrac-
tions in the cell. This is consistent with the contraction
measurements that are being used in our laboratory. We
are working on a similar energy conservation and infor-
mation content approach for assessing contractility in
neonatal cardiocytes, where we will measure the fine
granular changes in the image. Unlike adult cardiocytes,
which are highly organized and quite similar in morphol-
ogy, the neonatal cardiocyte is in the process of develop-
ing its contractile machinery. The neonatal cardiocyte is
generally unable to retract its cell boundary during con-
traction, and noticeable changes occur only within the
cell perimeter. For these reasons, it is difficult to perform
contractile measurements on this cell type in a manner
similar to that of the adult cardiocyte, in which changes
in cell boundary are quantified during contraction.
(Please see a recent article by Bazan, Torres-Barba, Pao-
lini and Blomgren [27] for a previously developed com-
putational framework for the quantitative assessment of
contractile responses of isolated neonatal cardiac
myocytes.)

We are given two shapes of the same topology, i.e.,
the shapes of a relaxed and contracted cardiocyte,
respectively (Figure 5), defined by the two functions S,

Figure 5 Cardiocyte contraction/relaxation process. Example of
two shapes of the same topology that depict the contraction/
relaxation process that we are trying to measure.
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Sy : © — {0, 1}. Our intent is to transform one into the
other, and vice-versa, in a process that resembles that of
the contraction/relaxation of the cardiocyte. As pro-
posed in [20], we will do this by warping, that is a
domain deformation # : QO — R? such that /& (Q) = Q
and

S1(x) = Sa(h(x)), Vx e Q. (5)

We are interested in the distance between the two
shapes, i.e., our proposed measure of contraction. The
distance between the shapes will be defined as the
energy of the aforementioned warping. Since there are
infinitely many warpings that satisfy (5), in order to
make this distance unique, it is defined as the one that
minimizes the energy in a suitably chosen class [28]. For
instance, as proposed in [20], d(S1,S2)=miny]|h|| sub-
ject to (5), where & is a diffeomorphism and ||-]] is
some chosen norm of integral form. This minimization
process can be recast as a variational problem of the
form

d($1,52) = Inf[Equa(S1, S2lh) + aBreg ()], ©)

where H is a suitable function space. The distance
between the two shapes, as defined above, is a function
of two energy components: Eq,, (S1, S |4), which repre-
sents the data fidelity; and E,.y (h), which is a regulari-
zation term. Both terms are explained in detail below.

In order to guarantee a meaningful vis-d-vis corre-
spondence between the two shapes up to a certain scale
[22] (i.e., a point x in the interior of the set that defines
S1 is mapped to a point / (x) in the interior of the set
that defines S,; and similarly, a point x in the exterior of
the set that defines S; is mapped to a point % (x) in the
exterior of the set that defines S,), we adopt the mea-
sure of data fidelity between the two shapes S; and S,
proposed in [20]:

Edaa(hIS1, S2) = /Q IR (x1S1) — Ro (h(x)[S2)2dx, (7)

where R, is the shape features (3) or (4).

In our application, the purpose of the regularization
term E,., (1) is two-fold. First, it is there to render the
problem well posed and is designed to penalize varia-
tions of the diffeomorphism function /4 in favor of
smoothness. Second, it makes the deformations compa-
tible with the deforming material. Several authors have
provided insight into the constitutive laws that describe
the mechanical responses of resting and contracting car-
diac muscle, along with their regional and temporal var-
iations [23,29-31]. The problem is, however, extremely
complex and has required of elaborate combinations of
multiaxial tissue testing [32,33], microstructural
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morphological modeling [34,35], statistical parameter
estimation, and validation with measurements [36,37].
Very sophisticated numerical methods are also essential
for accurate quantitative analysis in all phases of the
investigations [23].

The intact cardiac muscle undergoes finite deforma-
tions during the normal cardiac cycle. Thus, the classical
linear theory of elasticity is inappropriate for resting
myocardial mechanics [38,39,25]. The myocardium is
frequently modeled as a finite hyper-elastic material,
where the second Piola-Kirchhoff stress tensor compo-
nents Py, are related to the components of the Lagran-
gian Green’s strain tensor Ej;, through the pseudo-strain
energy W, as

b L(0W oW o ®
s o= + — P
772 \9E;  9E; PLi

where Cj; is the right Cauchy-Green deformation tensor
and p is a hydrostatic pressure Lagrange multiplier [23]
(which we assume to be zero in this analysis). Several
functional forms have been proposed for W [24,40,30,
41,42,26,33]. We will adopt the transversely isotropic func-
tional form proposed by Guccione, McCulloch and Wald-
man [24] that considers the fibrous structure of the
myocardium. The strain energy potential W is an expo-
nential function of the strain components E;; referred to
the fiber coordinates

W= $(?-1), o
Q= be%l + th%z + be(E%z + E%)/
where
1 /0h; 0h; 0hydh
Ej = T (10)
2 8xj 3xi 3xi 8xj

The aforementioned fiber coordinate system has the
coordinate directions of the muscle fiber axis, the axis
of the myofiber sheets, and the axis normal to the
sheets, and is derived by rotating the cardiac coordinate
system through the two angles that define the local
myofiber-sheet orientation [24]. In Eq. (9), E1; is the
fiber strain, E,, is the cross-fiber in-plane strain, and E;,
is the shear strain in the fiber-cross fiber coordinate
plane. Omens, MacKenna and McCulloch [26] have
found that the material constants C = 1.1 kPa, by = 9.2
kPa, b, = 2.0 kPa, and by = 3.7 kPa are appropriate to
model the strains measured in the rat midwall. Then,
the regularization term, E., (%), can be written as

Eush) = 5 [ (2= D (1)
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The optimal correspondence given by /#* is obtained by

h* = arg thin(Edata + Ereg). (12)

The energy minimization is performed in a variational
framework using a gradient descent method. The Euler-
Lagrange equation corresponding to the energy E =
Egata + Ereg yields the gradient direction for /:

oh oE

_ - 0Edata
ot oh oh

8Ereg
— 13
o (13)
where o is a small parameter (Lagrange multiplier).
Using the features from Eq. (3),
Rs(x]8) =S x) (Ks*(1-S (x)), we have

M = VS°h- (R (x1S1) = Ry (h(x)1S2))

(Ko % (S2°h — 1)) (14)
+ Ko * ((Rs (x1S1) — Ry (1(x)[S2)) - S2°h)},
and, in components form, we have
OEpe,
= Ge? [_bf o, (2u1 + 307 + 3u] + 17 +viuy)
—b 322 (2uavy + ugvs +13)
— by 821 (u% + Uyl + um% + Upn1p) (15)
— by aiz (Ug + 2uyuy + vy +v1uy + Uiy
+ U1V + V1VU)},
OEp,
s <23eQ {—bf ail (QQuiuy + 112 +13)
— by} (2u2 + 305 + 05 + 145 + u30))
— be 3?61 (U2 + UV + V1 + 21/11}2 + UilUy (16)
+ UV + vlvg)
—by, a?cz (viug + V2 + viuguy + U%Uz)} ,
where
Q= bf}l(2u1 +u% +1/%)2 +bt}l(2v2 +v§ +u%)2 17)
+ bf_;;(uz +V; +UjlUy + Ulvz)z,
With the following short-hand notation
ahy dhy
(h)x, = =uy, (h)x, = = Uy,
33(?1 axz (18)
() _3h2_v (h2) _th_v
“1'ax1'1’ 2x2—8x2—2~

Average Shape of the Relaxed State
In order for us to use the energy of the warping as a
measure of the cardiocyte’s contractions, we need to
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determine a baseline that will represent the state when
the cell is not contracting (relaxed). We will define this
baseline as the average shape of the cardiocyte’s relaxed
state. In other words, given an ensemble of shapes {S;,
Sy, ..o Sy}, we are interested in finding the average of the
cardiocyte’s shapes representing the uncontracted phase.

A video from our lab depicting a contracting cardio-
cyte will typically comprise about one thousand frames.
On average, about ninety percent of these frames will
show the cardiocyte in its relaxed state.

Furthermore, the shapes of the cardiocyte in these
frames are practically identical, then finding the average
shape only guarantees a more unbiased measurement
while providing for some regularization. Thus, in the
interest of minimizing the overall computing time, we
implemented a very simple averaging of contours in lieu
of a shape averaging. The algorithm is as follows: 1)
Identify the frames from each relaxed phase; 2) Obtain
the contours of the shapes; 3) Resample the contours so
that they will have the same number of points; 4) Find
the average centroid point; 5) Interpolate the points in
each contour using splines in polar coordinates; and 6)
Interpolate the splines among the contours. Figure 6
shows the effectiveness of this very simple contour aver-
aging approach where the contours of a relaxed shape
and a contracted shape were averaged. We show this
averaging since the average of two uncontracted con-
tours is practically indistinguishable from the two
uncontracted contours.

It is worth noting here that the aforementioned shape
averaging could have been accomplished within the
same shape deformation approach due to Hong, Soatto
and Vese [20], where they define their shape average M
as the shape that is closest to the ensemble, by simulta-
neously minimizing their energy functional equivalent to
Eq. (6). In other words, they look for M that minimizes

D dM, ). (19)
i=1

Figure 6 Average relaxed shape. The contours of a relaxed shape
and a contracted shape were averaged in order to show the
effectiveness of the contour averaging method. In practice, we only
average the contours of uncontracted shapes.
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They perform this optimization via alternating mini-
mization and gradient descent. Implementing the opti-
mization process proposed in [20] was deemed to be
too expensive a proposition for our purposes. Thus, we
opted for performing the simpler average of contours
which is two orders of magnitudes less expensive to run
on a personal computer equipped with MATLAB™,

Results and Discussion

Experimental Results

A typical deformation of the shape of a contracting myo-
cyte into the shape of the average relaxed myocyte is
shown in Figure 7. In this particular example, the warp-
ing process follows the path of minimum energy (as
defined in the Methods section) and the warped shape
matches the average shape with a correlation coefficient
of over 99.99%. The perfect matching was obtained in
246 iterations after which the warping energy reached a
stable minimum. This process is repeated for every frame
in the video depicting the contracting myocyte and the
total energy employed in each deformation is calculated.
These energies represent our measure of contractility.

iter: 246

€c:0.9999262  E:3.6416601

0 . . ! n
0 50 100 150 200 250
Iterations

Figure 7 Warping process and warping energy. (a) Warping of
the shape of a contracting myocyte into the shape of the average
relaxed myocyte. After 246 iterations the template shape matched
the target shape with a similarity of over 99.99% as measured by
the correlation coefficient between the warped shape and the
average shape. (b) Energy of the warping of the shape of a
contracting myocyte into the shape of the average relaxed
myocyte. The energy minimization process reaches a stable
minimum after 246 iterations.
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Figure 8 shows the normalized contraction measures
along with the energy profile resulted from the deforma-
tion process.

We tested the proposed approach by assessing the con-
tractile responses in isolated adult rat cardiocytes har-
vested and imaged as described in [18]. We contrasted
these measurements against both the classic raster-line
approach [15,11,12] and the contractility pipeline
described by Bazan, Torres-Barba, Paolini and Blomgren
[18]. Our results show good qualitative and quantitative
agreements between the proposed method and both the
raster-line method and the contractility pipeline as far as
frequency, pacing, and overall behavior of the contrac-
tions are concerned. Figure 9 reproduces the average
normalized contractions as assessed by the three meth-
ods in this study. We observe great similarities among
the three methods, specially during the contraction or
activation process marked by the electrical stimulus.

There exist small discrepancies during the relaxation
phase where the raster-line method seems to show a
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slightly different recover process. This phenomenon was
already reported in [18]. The raster-line method—being a
one-dimensional technique—is unable to capture the full
extent of the contraction process occurring outside its
domain of influence. The proposed method, as well as
the computational pipeline, capture the contraction of
the cell as a two dimensional event over the entire
boundary of the cell. Imaging the contracting cells with
a high speed camera might eventually elucidate this
small disagreement.

Conclusions

We explored the viability of a new approach to cardiocyte
contractility assessment based on biomechanical proper-
ties of the cardiac cells, energy conservation principles,
and information content measures. We defined our mea-
sure of cell’s contraction as being the distance between
the shapes of the contracting cell, assessed by the total
energy of the domain deformation (warping) of one cell
shape into another. To guarantee a meaningful vis-d-vis
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Figure 8 Contractions and Energy Profile. (a) Normalized contraction measures assessed with the proposed methodology. (b) Energy profile
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Figure 9 Average Contraction. Average contraction (10 contractions

in total) as assessed by the three methods in this study: proposed

method (red line), computational pipeline (green line), and raster-line

(blue line).

correspondence between the two shapes, we employed
both a data fidelity term and a regularization term. The
data fidelity term is based on nonlinear features of the
shapes while the regularization term enforces the com-
patibility between the shape deformations and that of a
hyper-elastic material. Our results show good qualitative
and quantitative agreements between the proposed
method and both the raster-line method and the contrac-
tility pipeline as far as frequency, pacing, and overall
behavior of the contractions are concerned.

We hypothesize that this methodology, once appropri-
ately developed and customized, can provide a frame-
work for computational cardiac cell bio-mechanics that
can be used to integrate both theory and experiment. For
example, besides giving a good assessment of contractile
response of the cardiocyte, since the excitation process of
the cell is a closed system, this methodology can be used
in an attempt to infer statistically significant model para-
meters for the constitutive equations of the cardiocytes.
This conjecture is still very preliminary. Nonetheless, the
way we envision this analysis resembles that of finding
the “spring constant” by measuring the deformation in
the material under a constant load. In our case, we know
the deformation of the cell undergoing contraction as
measured by the changes in the shape. We also know
that the energy that gets incorporated into the system
through the electrical stimulus is the same for every con-
traction. For the sake of this argument, let us assume
that it takes 10 snap-shots for the cell to go from its
relaxed state to the fully contracted state (that is 10
shapes Sy, S1, ..., Sg, Sg). Then, the total energy employed
by the cell to go from S, to Sy has to equal the sum of
the energies for moving the cell from Sy to S; + S; to S,
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+ ..+ S; to Sg + Sg to So. If we do this for every contrac-
tion in the experiment, we will have an over-determined
system that we can solve (one of the solutions) by finding
the least-square error. Note that, since we are assuming
that the constitutive parameters are the same for the tis-
sue sample, we can simply average these parameters
across many cells in the same experiment.

The aforementioned possible integration between the-
ory and experiment can also be extended further to
include functional coupling between the many physiolo-
gical processes that interact with mechanics such as cell
growth and signaling, metabolism, transport and
electrophysiology.
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