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PDE/ODE modeling and simulation to
determine the role of diffusion in long-term
and -range cellular signaling
Elfriede Friedmann

Abstract

Background: We study the relevance of diffusion for the dynamics of signaling pathways. Mathematical modeling
of cellular diffusion leads to a coupled system of differential equations with Robin boundary conditions which requires
a substantial knowledge in mathematical theory. Using our new developed analytical and numerical techniques
together with modern experiments, we analyze and quantify various types of diffusive effects in intra- and
inter-cellular signaling. The complexity of these models necessitates suitable numerical methods to perform the
simulations precisely and within an acceptable period of time.

Methods: The numerical methods comprise a Galerkin finite element space discretization, an adaptive time stepping
scheme and either an iterative operator splitting method or fully coupled multilevel algorithm as solver.

Results: The simulation outcome allows us to analyze different biological aspects. On the scale of a single cell, we
showed the high cytoplasmic concentration gradients in irregular geometries. We found an 11 % maximum relative
total STAT5-concentration variation in a fibroblast and a 70 % maximum relative pSTAT5-concentration variation in a
fibroblast with an irregular cell shape. For pSMAD2 the maximum relative variation was 18 % in a hepatocyte with a
box shape and 70 % in an irregular geometry. This result can be also obtained in a cell with a box shape if the
molecules diffuse slowly (with D = 1 μm2/s instead of D = 15 μm2/s). On a scale of cell system in the lymph node,
our simulations showed an inhomogeneous IL-2 pattern with an amount over three orders of magnitude (10−3 − 1
pM) and high gradients in face of its fast diffusivity. We observed that 20 out of 125 cells were activated after 9 h and
33 in the steady state. Our in-silico experiments showed that the insertion of 31 regulatory T cells in our cell system
can completely downregulate the signal.

Conclusions: We quantify the concentration gradients evolving from the diffusion of the molecules in several
signaling pathways. For intracellular signaling pathways with nuclear accumulation the size of cytoplasmic gradients
does not indicate the change in gene expression which has to be analyzed separately in future. For intercellular
signaling the high cytokine concentration gradients play an essential role in the regulation of the molecular
mechanism of the immune response. Furthermore, our simulation results can give the information on which signaling
pathway diffusion may play a role. We conclude that a PDE model has to be considered for cells with an irregular
shape or for slow diffusing molecules. Also the high gradients inside a cell or in a cell system can play an essential role
in the regulation of the molecular mechanisms.
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Background
A single cell, the smallest unit of life, alters, learns, adapts,
specializes and differentiates. One of the causes of the
diversification of a cell is the concentration distribution
of signaling molecules which trigger signaling pathways.
Changes in signaling pathways and in the amount of
molecule concentration induce different reactions in the
specific genes. These genes are controlled by proteins
(transcription factors) and play an important role on
the differentiation. They, in turn, control the concentra-
tion as well as the moment and duration of activation.
To understand these biological processes it requires a
detailed analysis of the signal transduction processes and
their interplay. These complex processes are commonly
described by mathematical models to generate experi-
mentally testable hypotheses. With the available data dif-
ferent mathematical models can be derived. Initially in
signal transduction, simple models consisting mainly of
cascades of events were developed. Then, more general
models followed to describe mechanisms such as pat-
tern formation and regulation of immune response. A
review on the state of the mathematical models in signal
transduction can be found in [1]. In most cases, ordinary
differential equations (ODE) are used to identify the role
of specific components of the pathway and to determine
the dynamics and outcome predictions. Partial differential
equations (PDE) were used to analyze pattern formation
for example stripe formation in zebras or fish [2], and cell
structure properties like deformability, cell polarity [3] or
cell migration [4].
In this paper, we use the reaction diffusion system for

cellular signaling pathways to find the spatial distribution
of the signaling molecules which causes the diversification
of cells and their actions. Our contribution is to include
the spatial aspect (size and geometry of the cell) of the
data-based signal transduction models considered by our
collaborators. Also we develop the mathematical mod-
els that describe the key dynamic properties and predict
strategies for intervention. We extend a simple ODE-
system to a more complicated PDE-system of reaction-
diffusion equations. In PDE we take into account the trav-
eling of the signal molecules from the outer membrane
through the cytoplasm, thus forming a concentration gra-
dient within the cell. The focus remains on the spatial dis-
tributions of the important signaling molecules whereas
other processes can be replaced by specific measurements
(e.g. the phosphorylated JAK (pJAK) concentration can be
determined and replace the whole receptor model) or by
ODE if we assume that the local domain (nucleus) of the
interplay of the concentrations is considered to be well
mixed (i.e. all processes take place everywhere).
The modeling leads to a coupled PDE/ODE system

with Robin type boundary conditions. This non-standard
model demands a substantial knowledge in mathematical

theory. It needs the additional development of both ana-
lytical tools and numerical algorithms for its analysis,
simulation and evaluation, which explains why the model
is not commonly considered in other fields. Moreover,
additional changes can occur on the dynamics of the path-
way when a diffusion is included as shown in [5] for the
Calvin-Cycle. The diffusion of the molecules can cause
a gradient in their concentration which often plays an
important role such as the one of RanGTP-Importinβ .
This gradient affects the stabilization of microtubules and
the formation of the mitotic spindle [6, 7].
We are interested in biological processes regulated by

diffusion of molecules over great distances (many cell dis-
tances) and a long period of time (over 200 min in the
intracellular and 30 h in the intercellular pathways). We
start with the classical diffusion model based on Fick’s law
[8]. Given the diffusion coefficient the velocity of the dif-
fusion depends on the nature of the medium, the size of
the particles and temperature. In order to describe the
complicated processes within a cell we consider a normal
diffusion, an aided diffusion (such as energy-controlled
movement or active transport with help of transport
molecules) and a retarded diffusion (due to the binding
process on other molecules). This leads to a nonuni-
form spatial distribution of molecules. Unfortunately, the
current microscopy methods are not fully capable of
measuring all dynamic parameters. Thus, diffusion maps
inside the cell based on the experimental data are not yet
available. In this paper we use the diffusion coefficient
measured by our collaborators via Fluorescence Recovery
After Photobleaching (FRAP) and Fluorescence Corre-
lation Spectroscopy (FCS). In our models the diffusion
coefficient has hence an extended physical meaning (it is a
macroscopic approximation of the cytoplasmic processes)
and can deviate from the one used in pure biomolecular
simulations.
Our data-based modeling simplifies the system of

equations because the certain biological phenomena can
be replaced by a measured quantity (e.g. the receptor
model in the JAK2/STAT5 pathway was skipped due to
the measurements of the concentration of the phospho-
rylated JAK2-molecules) [9]. In the models we use the
high-quality quantitative data from our collaborators [10].
This simplification is necessary for the theoretical treat-
ment of the model and the numerics in three dimen-
sions. The derived models have a structure allowing the
mathematical theory to be suitable for several applica-
tions. For example, there is a particle exchange between
two domains, one well-mixed domain (ODE model) and
an adjacent non-well mixed domain (PDE model). Reac-
tions occur in the well-mixed domain and reaction and
diffusion occur in the non-well mixed domain.
In this paper we discuss whether the diffusion of

signaling molecules plays a role in the signaling of intra-
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and intercellular systems. To illustrate this aspect we
consider the models of the well-known pathways such
as JAK2/STAT5, SMAD and IL-2. These non-standard
models need the additional development on both analyt-
ical tools and numerical algorithms for further analysis,
simulation and evaluation. The new analytical and numer-
ical tools are presented in [11, 12]. The simulation results
of the JAK/STAT pathway are presented for the first
time in this work. We quantify the influence of the cell
geometry and diffusivity on the dynamics of the signal.
We also quantify the concentration gradients during the
interplay between diffusion and degradation in order to
discuss its effect to the cell fate. The biological interpreta-
tion of the simulation results are presented in a compact
form to provide an overview in which pathways and cells
the diffusion may play a role.
The paper has five main sections. After an introduction

to the subject in the first section, the section Methods
presents two of our mathematical tools: modeling and
numerical simulations. We present the general mathemat-
ical models which differ from the commonly used models
for these applications. We will give a short overview of
their mathematical analysis and numerical calculations to
underline the importance of the theoretical background.
We present our numerical methods based on finite ele-
ments which are used to simulate the modeled equations.
We use a different method to solve the stronger nonlinear
coupling in the inter-cellular model. Therefore, each of the
section Results and Discussion comprises two subsections
where we examine models with intra- and inter-cellular
diffusion separately. An analysis of the numerical methods
used will be subject of a forthcoming paper. The section
Discussion contains the observations and the biological
interpretation of the numerical results.

Methods
Model setup
Since the process inside a cell is highly complex all the
existing models are only an attempt of an approximation.
Membrane receptors receive extracellular signals from
each cell in form of protein concentrations. The signals
are processed, encoded and transferred to the nucleus
where a further development is decided. This signal pro-
cessing from the cell membrane to the nucleus occurs
via activation (phosphorylation) and spatial relocation of
the components of the signaling pathways. The cytoplas-
mic proteins are recruited to the cell membrane where
the activation takes place. The activated molecules dis-
sociate from the receptor, dimerize, trimerize or form
other complexes and move to the nucleus to regulate the
transcription of target genes. Then, the molecules are
deactivated and are shuttled back to the cytoplasm where
the whole process restarts until the cell cycle in the consid-
ered pathway is regulated. The three factors that influence

the process are the fast diffusion rate, the activation rate
and the boundary conditions at the interface between
cytoplasm and nucleus which determine a nuclear accu-
mulation of the activated molecules. A steady state is
reached by the continuous molecule shuttling.
In [6] it shows that the spatial separation of activa-

tion and deactivation mechanisms can result in steep
phospho-protein gradients. For spherical cells, a single
concentration and cytosolic phosphatase, diffusion must
be taken into account if D/L2 << k, where L describes
the traveled distance and k the dissociation rate of the
molecules. In [12] it shows that this estimation can be
used for ourmodel in the case of cells with a regular shape.
For general cases and non-linear models this estimation
can not be applied, andwe need three dimensional simula-
tions for each considered pathway. The cell fate is not only
determined by the cell itself but also by surrounding cells
(cell-to-cell communication) and molecules and a com-
plex interplay between them. We will present the models
for signaling pathways inside a cell (intra-cellular signal-
ing pathways) and between cells (inter-cellular signaling
pathways) that appear to have the same mathematical
structure.
The coupled PDE/ODE reaction diffusionmodel
Let x ∈ � and t ∈ [ 0,T] , 0 ≤ T < ∞ be two inde-
pendent variables (spatial and temporal respectively) and
ui(t, x) denote the spatial-temporal molecule concentra-
tions (i = 0, 1, . . . , n) involved in the specific pathway
at position x and time t , n ∈ N. Also let � ⊂ R

3

be the space resolved part (e.g. cytoplasm or extracel-
lular space) and thus bounded by a sufficiently smooth
boundary ∂�. We use the standard notation of space-time
function spaces. For a real function Banach space X with
norm ‖ · ‖ on �, the space Lp(0,T ;X) consists of all
measurable functions u :[ 0,T]→ X with

‖u‖Lp(0,T ;X) :=
(∫ T

0
‖u(t)‖p dt

)1/p

< ∞, (1)

for 1 ≤ p < ∞, and ‖u‖L∞(0,T ;X) := ess sup(0,T) ‖u(t)‖ <

∞. We denote by (·, ·)� and (·, ·)� the usual L2 scalar
products over the domain � and a part � ⊂ ∂� of
its boundary, respectively, and by ‖ · ‖� and ‖ · ‖� the
corresponding norms.
The general structure of our models looks like a

coupled two-compartmentmodel. In � we have reaction-
diffusion equations (PDE) for each diffusing concentra-
tion ui with diffusion rate Di ≥ 0, i = 0, . . . ,m :

∂tui = Di�ui − fi(ui,uj) in � × (0, T] ,
j = m + 1, . . . , n.

(2)

The functional f describes the kinetical part of the law
of mass action and the coupling with involved concentra-
tions uj entering the domain � . We potentially have a
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nonlinear Robin boundary condition on a partial bound-
ary � ⊂ ∂� :

Di∂nui = gi(ui,uj) on � × (0, T] . (3)

For the mathematical correct formulation we impose an
initial condition from measurement:

ui(0, x) = u0i in �. (4)

Under the assumption of the well-mixed molecule con-
centrations over a certain domain (for example in the
nucleus in our intracellular signaling models or in the
entire cell in our intercellular signaling models), we have
ODE:

∂tuj = hj(ūi,uj) in (0, T] , j = m + 1, . . . , n, (5)

with the space-independent averaged value
ūi = 1

|∂�|
∫
∂�

ui(t, s)ds and initial conditions

uj(0) = u0j . (6)

The detailedmodel description for the JAK2/STAT5 sig-
naling pathway can be found in [9], the SMAD pathway in
[12] and the IL-2 signaling in [13–16].
The mathematical analysis and numerical simulation

of such systems can not be performed with a standard
theory. The methods depend very much on the variety
factors such as structure of the equations, nonlinear-
ities, coupling, domain and more. For a linear model
for JAK2/STAT5, we showed the well-posedness and the
properties of the solution for reliable numerical simula-
tion [11]. In [17] analytical investigations are performed
for a simplified situation of two cells in two dimensions.
In [14, 17] numerical simulations were performed in two
dimension by using Finite Differences (FD). Nevertheless,
the two dimensional results represent an artificial real-
ity, e.g. the 2D cells are infinitely-long cylinders instead
of spheres. The cytokine Interleukin 2 (IL-2) can spread
only in two directions causing the change in its amount
and gradient. For a better understanding of the process,
realistic simulations in three dimension are necessary [13].
In the next section we present the numerical simulations

of (2)–(6).

Numerical simulations
General description of themethods
We implement the coupled PDE/ODE system in the
Finite-Element-platforms developed in our group
(Gascoigne [18] and deal.II [19]). The principal compo-
nents of our numerical methods are:

• Galerkin space discretization by Finite Elements (FE)
• segregating solution approach [12] or a fully coupled

multilevel algorithm as solver [13]
• multilevel preconditioner with a Block-Gauss-Seidel

scheme as smoother consisting of damped Jacobi
iterations on the PDE part (presented in a
forthcoming paper)

• error control techniques with the Dual Weighted
Residual (DWR) method for space and time adaptive
discretization [20, 21].

A segregating solution approach is a splitting solution
approach. It is often used when the restriction on accuracy
can be relaxed in order to allow an easier numerical treat-
ment of complicated problems. Such an approach makes
it possible to reuse the existing solvers and is widely used
in numerical methods for coupled systems. The equations
are discretized via the Rothe Method, first on tempo-
ral discretization by applying backward Euler or a similar
solver of second order, then on spatial discretization via
Finite Elements. The two parts are solved sequentially
with splitted operators which keep the storage space low.
In case of a strong coupling, it requires a very small time
step which leads to a long computing time. Therefore, we
developed an adaptive and fully coupled solver for the
inter-cellular model.
Because the main focus of this paper is devoted to bio-

logical diffusion, we will keep the mathematical aspects
short. Interested readers are recommended to look trough
the literature cited.

Results
Intra-cellular diffusion
Our model of the JAK2/STAT5 signaling pathway and the
parameters can be found in [9]. The STAT5 molecules
form dimers in both activated and non-activated states.
If our concentration variables describe the dimers instead
of the monomers, the resulting model equations are lin-
ear with a unique solution [11]. We consider the model for
different cell types and different cell geometries:

• a sphere-type primary cell (CFU-E, Figs. 1 and 2)
• a mathematical model of fibroblast (NIH3T3,

Figs. 1, 3 and 6)
• a reconstructed fibroblast via microscopy data

(Figs. 1 and 4)
• an artificial cell where we added two cytoplasmic

extensions (filopodia) to the reconstructed geometry
(Fig. 5).

The model for the different cell types requires different
input parameters. Some parameters were measured by
specific experimental methods and others were estimated
[9]. Fibroblasts can have various shapes often depend-
ing on the current function or tissue concentration [12].
This has to be considered in modeling as well as in the
experiments when a certain parameter is measured.
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Fig. 1 Considered geometries of the cells. Left: the sphere-type CFU-E,middle: the modeled fibroblast, right: the reconstructed fibroblast from
microscopy data

Fig. 2 Concentration distribution in the CFU-E cell. Homogenious STAT5-concentration distribution. There is no deviation with respect to the pure
ODE model; everything is well-mixed
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Fig. 3 Concentration distribution in the modeled fibroblast. Nonhomogenious total STAT5-concentration distribution: 11 % gradient in the total
STAT5-concentration. Deviation to the ODE model: 0.7molecules/μm3

To examine the spatial distribution of the diffusive
molecules, activated and non-activated STAT5 in the
cytoplasm (u0,u1), we evaluate the maximum relative
variation of a concentration at a given time point t:

max
x∈�

var(ui) =
max
x∈�

ui(x) − min
x∈�

ui(x)

max
x∈�

ui(x)
, i = 0, 1. (7)

One of the advantages of numerical simulations (in silico
experiments) is that we gain additional information about

the processes modeled. The outcome of the simulation
can be adapted to meet the requirement of the experi-
ment. For this pathway both states of the molecules (non-
and activated state, u0+u1) must bemarked andmeasured
together. The quantity of each specie or other quantities
of interest that can not be evaluated in the experiment can
be determined from the simulation.
The results of the simulation of the JAK2/STAT5 model

are presented in the Figs. 2, 3, 4, 5 and 6.

Fig. 4 Concentration distribution in the reconstructed fibroblast. Nonhomogeneous pSTAT5-concentration distributin: 10 % gradient in the
phosphorylated STAT-concentration. Deviation to the ODE model: 0.07molecules/μm3. The figure shows a cut in the (y,z)-plaine, only half of the
fibroblast
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Fig. 5 Concentration distribution in the artificial fibroblast with extensions. Nonhomogenious pSTAT5-concentration distribution: 70 % gradient in
the total STAT-concentration. Deviation to the ODE model: 0.35molecules/μm3

Result 1. For a perfectly spherical cell such as the CFU-
E cell with a large nucleus compared to the amount of
cytoplasm, we observed a homogeneous distribution of the
signalingmolecules due to the fast diffusion (Fig. 2). For this
geometry we observed no deviation between the ODE and
the PDE model.

Result 2. For the modeled fibroblast we observed a
maximum relative variation of 11 % of the total STAT-
concentration. The concentration in the cytoplasm was
about 1.5molecules/μm3 higher compared to the out-
come of the pure ODE model due to the diffusion of the
molecules into the nucleus. The activation process takes
a place at the cell receptors located at the outer mem-
brane which concludes that the main contribution to this
concentration variation comes from the activated STAT5-
concentration. Comparing the results of the ODE model
with the PDE model the largest difference in the acti-
vated STAT5-concentration was 0.7molecules/μm3 for the
modeled fibroblast (Fig. 3). This amount occurred 10 min
after starting the activation process. During 200 min
of simulation a steady state was observed in the last
80 min.

Result 3. The simulation result for the reconstructed
geometry lies in between the results of the CFU-E cell
and the modeled fibroblast. Here, we obtained a maxi-
mum relative variation of 10 % of the activated STAT-
concentration, a variation of 2−3.5 % of the non-activated
STAT-concentration and a concentration difference of
0.07molecules/μm3 between the ODE and PDE model
(Fig. 4).

Result 4. The greatest relative concentration variation
was observed in the artificial cell assembled with the
two extensions: 40 % for the unphosphorylated STAT5-
molecules and 70 % for the phosphorylated (Fig. 5).
The deviation in the pSTAT5-concentration between
the two models (ODE-PDE) was five times greater
(0.35molecules/μm3) than in the same cell without
extensions.

A cell has a complex structure thus the diffusion of
the molecules therein is not isotropic like in homoge-
neous materials, i.e. the same diffusion in every direction.
In some parts of the cytoplasm there is a retardation
in the motion of molecules possibly caused by binding
processes and a speed-up by active transport or aided dif-
fusion. Especially in signaling pathways, the molecules are
recruited towards the nucleus. Often they are transported
by motor-proteins along the microtubules, so that the dif-
fusion can be faster in direction to the nucleus. To model
this biological behavior we consider the convection-
diffusion equation with a time and space dependent diffu-
sion tensor D̃(t, x). For i = 0, . . . ,m and j = m + 1, . . . , n,
we have

∂ui
∂t

= ∇ · (D̃i(t, x)∇ui) − ∇ · (vui)

− fi(ui,uj), in � × (0, T].
(8)

v is the velocity of the motor-proteins. To determine v it
requires additional experiments. As a first approximation,
we use the anisotropic diffusion equations with an
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inhomogeneous but constant diffusion tensor for each
diffusing species:

∂ui
∂t

= ∇ · (D̃(t, x)∇ui) − fi(ui,uj) (9)

with

D̃(x, t) =
⎛
⎝ D̃xx 0 0

0 D̃yy 0
0 0 D̃zz

⎞
⎠ , x ∈ �.

For the isotropic diffusion in Eq. (2) we used the same
diffusion coefficient for the activated and non-activated
STAT5, Di = D̄, i = 0, 1.

D̄ =
⎛
⎝D 0 0

0 D 0
0 0 D

⎞
⎠ .

Remark. We choose the coefficients D̃xx, D̃yy and D̃zz so
that we have higher diffusion towards the nucleus D̃yy >>

D and smaller diffusion elsewhere D̃xx = D̃zz << D. Also
we want the same trace in the diffusion tensors, i.e. D̃xx +
D̃yy + D̃zz = 3D. The results are presented in Fig. 6:

Result 5. For spatial inhomogeneous diffusion of the
molecules we obtained the same maximum relative varia-
tion of the total STAT-concentration (1.5molecules/μm3).
However, the deviation between the ODE and PDE
model was six times greater after 10 min of activation
(0.42molecules/μm3) and three times greater in the steady
state (0.23molecules/μm3) than in the cell with isotropic
diffusion. This coincides with the fact that some molecules
reach the nucleus faster but others have a longer sojourn
time in the cytoplasm.

As a second intra-cellular signaling pathways we ana-
lyze the SMAD signaling pathway in hepatocytes. Details
of the model and the biological function of the pathway
can be found in [12]. The SMAD-molecules undergo a
more complex oligomerization. They form dimers and
trimers and react with other molecules building multi-
complexes that are described by non-linear and more
complex equations. For the cell shape we also consider
various geometries:

• a mathematical model of hepatocyte (Fig. 7 left)
• a reconstructed geometry from microscopy data

(Fig. 7 central)
• an artificial geometry assembled with two

cytoplasmic extensions (Fig. 7 right).

The hepatocyte model represents a cell from the liver. It
has a regular box-shape due to the high cell density in
the tissue. The reconstructed cell is flatter and elongated
due to microscopy reconstruction from a cell culture with
a less-dense cell concentration [12]. In the artificial cell
we added two cytoplasmic extensions to the modeled
geometry to see any possible effect of these cytoplas-
mic structures which commonly appear in less-dense cell
cultures.

Result 6. We observed a much greater maximum rela-
tive concentration variation in the activated SMAD con-
centration than in the activated STAT concentration in
the JAK2/STAT5 pathway. For the activated SMAD2 we
obtained 18 % in the box shaped cell, 38 % in the recon-
structed and 50 % in the artificial cell [12].

To observe the influence of the cytosolic gradients on
any further processes concerning gene regulation we ana-
lyze the difference in the nuclear trimer concentration
which binds to the DNA. Figure 8 shows the result as
follows:

Result 7. A visible difference in the nuclear SMAD-trimer
concentration between the ODE and PDE model was seen
only in the artificial cell with extensions.

For the further investigation on this particular case
where the greater gradients in the cytoplasm have only
small effect on the amount of concentration in the nucleus
we compare the total amount of SMAD-trimers in the two
compartments (Fig. 9):

Result 8. For the modeled hepatocyte with a regular form
we observed no visible difference in the nuclear SMAD-
trimer concentration between the ODE and PDE model
except for slower diffusing molecules.

Fig. 6 Anisotropic diffusion. In case of anisotropic diffusion we observe also a nonhomogenious concentration distribution: 11 % gradient in the
total STAT-concentration and a greater deviation to the ODE model: 0.42molecules/μm3 (×6) at t = 10 min and 0.23molecules/μm3 (×3) in the
steady state
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Fig. 7 Gradients in the pSMAD2-concentration. We observe a 18 % gradient in the pSMAD2 concentration in the box shaped cell, a 38 % gradient in
the reconstructed and a 50 % gradient in the artificial cell with extensions

Different diffusion coefficients give rise to different
concentration distributions:

Result 9. A slower diffusion of the cytosolic trimer with
D = 1μm2/s instead of D = 15μm2/s implied a
70 % cytosolic SMAD-trimer concentration variation in

the steady state (Fig. 10) compared to 18 % as seen in the
previous result.
We will give a more detailed discussion about the size

of cytosolic gradients and their effect to the development
of the cell in the next section, Discussion about biological
diffusion.

Fig. 8 Deviation in the nuclear trimer concentration. We observe no deviation in the nuclear trimer concentration in the box shaped cell, a
negligible deviation in the reconstructed and a clear visible deviation in the artificial cell with extensions: ODE (red) and PDE (green)
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Fig. 9 Deviation in the cytoplasmic and nuclear trimer concentration. The deviation in the cytoplasmic concentration of the trimer is compensated
by a deviation in the nuclear trimer concentration: ODE (blue), PDE with D = 15μm2/s (pink) and PDE with D = 1μm2/s (green). The nuclear
trimer concentration is of three orders of magnitude higher than the cytoplasmic trimer concentration (nuclear accumulation)

Inter-cellular diffusion
Our model captures the first 30 h of IL-2 signaling, the
initial phase after antigen stimulation where the cells are
primed for proliferation but have not yet entered initiated
cell division. Biological details can be found in [14–16].
For numerical calculations we choose a part of the three

dimensional lymph node with 125 or 218 cells (Fig. 11).
25 % of these cells are randomly chosen as secreting IL-2
(secretory T cells) and the rest of the cells are absorbing
IL-2 (T helper and regulatory cells). The cells compete
for IL-2 and those who absorb more will upregulate their
receptors and consume even more IL-2. So called reg-
ulatory T cells have a higher absorbing rate and may
downregulate the signal, for example to avoid autoim-
mune reactions. The interaction of the cells generates a
space and time dependent dynamics which describes the

competition of the cells for IL-2. This dynamics depends
on the position of the different cell types and stabilizes
after 30 h in an inhomogeneous steady state. The winner
cells are activated as a large number of receptors (more
than 4000 receptors after 30 h of simulation time) are
formed on the surface.

Result 10. In Fig. 12 the particular isosurfaces of the IL-
2 distribution are presented in the extracellular space at
specific time points (after 1, 9 and 30 h of activation)
obtained by topological methods [22]. We confirmed the
fast-diffusivity of IL-2; after only an hour IL-2 diffused
everywhere in a high concentration. Then the local chemi-
cal reactions on each cell start to determine the behavior of
the dynamics. If a cell has a greater chance to absorb more
IL-2 it express more receptors. Due to the higher amount

Fig. 10 Gradient in the cytosolic SMAD-trimer and amount of the nuclear trimer concentration for the regular formed hepatocyte. We observe a
70 % gradient (left) of cytosolic SMAD-trimer in the regular formed hepatocyte using D = 1μm2/s (solid line) and a 18 % gradient using faster
diffusion, D = 15μm2/s (dotted line). A difference in the diffusion coefficient of one order of magnitude does not influence the nuclear trimer
concentration, and the huge gradient in the cytoplasm seems having no influence in the nucleus which is an indication of nuclear accumulation
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Fig. 11 Schemes of the calculation domain. Prototype of our calculation domain which represents a cubic cutout of the 3D-lymph node containg
125 T-cells from which 25 % are secreting cells (left, right) and 25 % regulatory cells (right)

of expressed receptors the cell absorbs even more IL-2 so
that in its vicinity there is not enough IL-2 left for the other
cells to be activated. Consequently, an inhomogeneous IL-
2 pattern and high concentration gradients are formed. In
our model we have 31 secretory cells out of 125. After 9 h
of activation we observed 20 activated cells and 33 cells
after 30 h in the steady state. The same simulations with
31 regulatory T cells showed an IL-2 concentration of one
order of magnitude (ten times) lower after one hour (com-
parison Fig. 12 a) with d)). After 9 h we observed a very
low IL-2 concentration and no activation. This behavior
remains until the steady state. We can conclude that in our
model 31 regulatory T cells can completely downregulate
the signal.

Result 11. The Fig. 13 left shows the IL-2 distribution on
the surface of 218 cells. The concentration varies over three
orders of magnitude. The Fig. 13 right shows the expres-
sion level of the cells: 60 out of 218 cells have more than
4000 IL-2 receptors and are thus considered as activated.
By introducing 54 regulatory cells into the lymph node this
activation would be suppressed completely.

To analyze the range of action of the cytokine IL-2 we
constructed a three dimensional in silico experiment con-
taining 3375 cells (Fig. 14). The cell in the middle is the
single secreting cell in the system and all others are naive
T helper cells which can be activated when enough IL-2 is
available.

Result 12. The Fig. 14 shows that only 37 cells were acti-
vated in immediate vicinity of the secreting cell (marked
with yellow) by a secretion rate of 106molecules/h which
confirms the strong localized uptake of IL-2. Our calcu-
lations showed that with a higher secretion rate (1.5 ×
106molecules/h) 123 cells were activated.

In the next section we will discuss the importance of the
modeled biological diffusion for the intra- and as well for
the inter-cellular signaling pathways.

Discussion about biological diffusion
Intra-cellular diffusion
Our simulations give us the potential to analyze the effect
of diffusion of signaling molecules. The signal to the
nucleus may be delayed or modulated by diffusive pro-
cesses which causes changes in gene expression. The pos-
sibility of an impact of the changed signal on the further
development of the cell has to be analyzed separately in
each model.
In case of the SMAD signaling pathway we investigate

further on the role of diffusion. In addition to the nuclear
accumulation, our intra-cellular models exhibit mass con-
servation. Themolecules change the compartments (cyto-
plasm and nucleus), their state (non-activated to activated
and vice versa) and interact with each other while their
number is preserved. The deviation of the concentrations
(pSMAD2, trimer) in the cytoplasm is balanced by a devi-
ation of the corresponding concentrations in the nucleus.
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Fig. 12 Spatial distribution of IL-2 in the extracellular domain. a 31 (of 125) secreting cells, high IL-2 distribution all over at t = 1h, b lowest mean
IL-2 distribution, heterogenous pattern, 20 activated cells at t = 8h, c heterogenous IL-2 distribution, 33 activated cells in the steady state at t = 30h
d 31 secreting cells, 31 regulatory T-cells (of 125), low IL-2 distribution after t = 1h, e very low IL-2 concentration after t = 8h, no cell activated, f very
low IL-2 concentration after t = 30h, no cell activated. The IL-2 distribution is visualized by isosurfaces obtained from topological methods [22]

Due to the nuclear accumulation any remarkable cyto-
plasmic concentration deviation is slightly small in the
nucleus for cells with regular shape. In this case enough
transcription factors may be available in the nucleus and
do not have to compete for the binding sides of the

DNA except for the case where the molecules diffuses
slower than D = 1μm2/s. For a diffusion coefficient
D = 15μm2/s we observed in Fig. 9 no change in the
nuclear concentration in the PDE model compared to
the ODE model and for D = 1μm2/s a small change

Fig. 13 Distribution of IL-2 and receptors on the cell surfaces. Left: amount of IL-2 in pM on the cell surfaces, right: IL-2R expression level of
non-secretory Th cells. 60 cells (from 218) are above 4000 IL-2Rs and thus considered as activated
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Fig. 14 IL-2 range. Only 37 cells out of 3374 (marked gold) are activated from a single secreting one located in the middle. We used
q = 106 molecules/h. The diffusion of IL-2 is fast, it spreads inside the domain such that a few cells can be activated

with a possible effect to the signal which we will discuss
later.

Result 13. Our simulation results showed that in sig-
naling pathways with nuclear accumulation the size of
cytoplasmic gradients does not indicate the change in gene
expression. For cells with regular shape the effect of cell
geometry to the signal can be neglected. The concentration
difference in the nucleus where gene expression occurs is
small and the effect to the further development of the cell is
not known yet.

Figure 10 demonstrates that different sizes of gradi-
ents in the cytoplasm (70 %, 18 % respectively) caused by
two different diffusion coefficients (D = 1μm2/s, D =
15μm2/s) give rise to the same dynamics in the nuclear
trimer concentration. For the considered set of parame-
ters our numerical simulations show that the diffusion of
molecules in the cytoplasm always plays a role in cells
with an irregular shape like dendritic cells or cells with
cytoplasmic extensions. In case the diffusion coefficient
D is of a few orders of magnitude lower than in the con-
sidered pathways (D << 15μm2/s), visible effects may
appear in the dynamics also for cells with regular shape.
The deceleration of diffusion of a factor 10 does not have
an effect (Figs. 10 and 15). This gives an idea that for
our applications themeasurement of diffusion coefficients
allows more flexibility.

Result 14. In a cell with a regular shape the slow diffusing
molecules (D < 1μm2/s) cause the change in the nuclear
concentration.

Figure 15 shows that the cell with extensions exhibits a
greater relative concentration variation in the cytoplasmic
concentration (45 %) and also a visible deviation in the
nuclear trimer concentration. The molecules are activated
on the outer membrane and need a longer time to travel
through the cytoplasmic dendrite to the nucleus. This
implies that less molecules are available for the processes
in the nucleus, and diffusion can change gene expres-
sion in a cell with irregular shape. This is explained by
the inhibition of pSMAD2 and trimer nuclear accumu-
lation in [12]. SMAD2 molecules persist longer in the
cytoplasmic domain. Therefore, the chance for other pro-
teins to compete for SMAD2 binding increases. In the
end less molecules will be available in the nucleus to
bind to the DNA. Nevertheless, SMAD molecules are
latent transcription factors that interact with a plethora
of different co-activators, co-repressors and polymerase.
One of the well-studied cofactors that binds to nuclear
SMAD trimers is SnoN. Recent data suggests that SnoN
modulates the effect of TGF beta [23]. In Fig. 16 we
compare the SnoN and the multi-protein complex SnoN-
SMAD-tetramer concentration from the ODE with the
PDE model in the cell geometry with extensions. Due
to the cytosolic trimer diffusion, there are less trimers
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Fig. 15 Gradient in the cytosolic pSMAD2 and amount of the nuclear trimer concentration for the hepatocyte with extension. We observe a 16 %
gradient (left) of cytosolic pSMAD2 in the modeled hepatocyte (solid line) and a 45 % gradient in the cell with extensions (dotted line). The amount
of nuclear trimer concentration (right) in the steady state is lower for the cell with extensions, the molecules sojourn longer in the cytoplasm until
they reach the nucleus

available in the nucleus than for the ODEmodel. So, in the
nucleus more SnoN molecules and less complexes than
in the ODE model can develop in time. The deviation
in the complex concentration is present only from 15 to
50 min after activation which implies that due to nuclear
accumulation there are enough trimer molecules available
in the nucleus for complex formation when enough time
is provided. The amount of the concentration deviation
seems small: with the values of 0.1 nM (2 % of the total
concentration) for SnoN and 0.05 nM (6 % of the total
concentration) for the complex SnoN-SMAD-tetramer.
Nevertheless, due to the feedback loops even small
changes in nuclear SMAD trimers can have a profound
effect on the multi-factor complexes. SnoN interacts

also with the transcription factor p53 [24]. In conclu-
sion the temporal availability of SMAD-trimers due to
the modulatory effect of co-activators and co-repressors
can result in altered cell fate in cells with irregular
shape.

Result 15. For cells with irregular shape the effect of diffu-
sion is greater. The cell geometry has greater influence on
the change in the nuclear concentration than the diffusion
velocity.

Inter-cellular diffusion
In contrast to the intra-cellular signaling pathways dis-
cussed above, we will see that for the inter-cellular IL-2

Fig. 16 Deviation of the nuclear SnoN- and SnoN-SMAD-tetramer-concentration in the hepatocyte with extensions. Comparison of ODE (solid line)
and PDE (dotted line) for the nuclear SnoN (left) and SnoN-SMAD tetramer protein complex (right) in the artificial hepatocyte with extensions



Friedmann BMC Biophysics  (2015) 8:10 Page 15 of 16

signaling pathway high gradients are crucial for the effec-
tive signal.
Upon stimulation by antigen in the lymph node, the

proliferation and the differentiation of T lymphocytes are
tightly regulated by the interplay of regulatory T cells
and T helper cells. These T helper cells recognize an
antigen of an antigen presenting cell and then activate
responding T cells as a part of the immune response.
Regulatory T cells instead suppress the activation of the
responding T cells. Understanding the role of regulatory
T cells is important for the treatment of autoimmune dis-
eases and cancer. The success of organ transplantation
and cancer immunotherapy are directly linked to the sup-
pressing activity of regulatory T cells. The experimental,
theoretical [14] and numerical studies [17] have identi-
fied secretion and uptake of IL-2 as a possible mechanism
mediating immune suppression by regulatory T cells.
In [25] it was found that the cytokines are secreted in a

polarized way at the immunological synapse preferred in
a very narrow space nearby the contact with the antigen
presenting cell. In particular, it is not understood within
which spatial range cytokines can signal. It was specu-
lated that the range of influence of the cytokine remains
restricted to these two contacting cells. On the other side,
it was shown that all cells in the lymph node can sense
the cytokine IL-4 [26]. This gives the evidence to a more
global distribution of cytokines.
Cytokine concentrations measured by ELISA studies

in T cell cultures are typically in the pM range [27]. In
this regime, cytokine molecules can reach their targets
only after the diffusion over large distance as seen from
the molecular scale. We assume that the time for IL-2
molecules to diffuse towards a T cell is short. In con-
trast, the average time to reach a receptor at the cell
surface is long because naive T cells express only small
number of cytokine receptors, which is not detectable
in experiments. Thus, IL-2 concentrations measured by
ELISA are too low to generate reliable signals. It has been
reported that IL-2 is subject to huge gradients with much
higher concentration at the surface of T cells [28]. To
investigate such inhomogeneities, it is necessary to con-
sider the spatiotemporal dynamics of cytokine signals.
More details are given in [13].
We determine the number of activated cells (Fig. 12),

the amount of IL-2 in the extra-cellular space (Fig. 13), the
range of action of IL-2 (Fig. 14) and the required num-
ber of regulatory cells to downregulate the signal (Fig. 12).
In our calculation we observe a variety of IL-2 amount
over three orders of magnitude over the entire simulation
time (Fig. 13 left). Thus, for activation the cells require
both a transient strong and a stable weak IL-2 signal. The
competition for IL-2 in the lymph node among regulatory
T cells, responding T cells and T helper cells is thus a very
local process. The position of the secretory cells decides

which cell will be activated in the absence of strong stim-
ulation. Figure 12(e), (f) show that for the chosen set of
parameters 25 % of regulatory cells are enough to cancel
out the high levels of IL-2 as no activated cells (marked
with gold) are found.
We observed that for a large secreting rate the surround-

ing cells are activated as well for the spatial range over
which the IL-2 signal can occur.

Result 16. Secreting cells produce short-range signals
despite of fast diffusion. For the chosen set of parameters,
the radius of activation covers 2 cell distances (20 μm). For
the higher secretion rate in the Result 12 it covers 4 cell dis-
tances (50 μm). Only clusters of secreting cells will cause
long-range signals [13].

Conclusion
In this work we presented the simulation results of new
mathematical models for signaling pathways. Including
the aspect of the diffusion of the molecules and the bene-
fit of measured data, our models show a special structure
described by a system of coupled PDE/ODE with Robin
type boundary conditions. The three dimensional sim-
ulations in several realistic cell geometries with specific
parameters show the dominance of the chemical reactions
over diffusion in all models. The chemical reactions deter-
mine the gradient formation and their result to the cell fate
and finally, the spatial range of the signal. Nevertheless,
the diffusion must be considered in cells with irregular
form or for slow diffusing molecules (D < 1μm2/s).
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