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Abstract

Background: Knowing the binding site of protein–protein complexes helps understand their function and shows
possible regulation sites. The ultimate goal of protein–protein docking is the prediction of the three-dimensional
structure of a protein–protein complex. Docking itself only produces plausible candidate structures, which must be
ranked using scoring functions to identify the structures that are most likely to occur in nature.

Methods: In this work, we rescore rigid body protein–protein predictions using the optimized potential for efficient
structure prediction (OPEP), which is a coarse-grained force field. Using a force field based on continuous functions
rather than a grid-based scoring function allows the introduction of protein flexibility during the docking procedure.
First, we produce protein–protein predictions using ZDOCK, and after energy minimization via OPEP we rank them
using an OPEP-based soft rescoring function. We also train the rescoring function for different complex classes and
demonstrate its improved performance for an independent dataset.

Results: The trained rescoring function produces a better ranking than ZDOCK for more than 50 % of targets, rising
to over 70 % when considering only enzyme/inhibitor complexes.

Conclusions: This study demonstrates for the first time that energy functions derived from the coarse-grained OPEP
force field can be employed to rescore predictions for protein–protein complexes.

Keywords: Protein–protein docking, Coarse graining, Rescoring, Flexible docking

Background
One of the main goals of proteomic research is to under-
stand the biological function of proteins. Many proteins
generate their function not as monomers but as part of
complexes. Thus knowledge about protein–protein inter-
actions is fundamental and allows regulation of protein
structure and function. The Protein Data Bank (PDB) [1]
contains more than one hundred thousand protein struc-
tures. However, structures of protein–protein complexes
are often difficult to determine experimentally. These
complexes are usually very big, which is a problem for elu-
cidating structure via nuclear magnetic resonance (NMR),
and the interactions are often too transient to be captured
by X-ray crystallography.
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Protein-protein docking is an in silico method for pre-
dicting the structures of protein–protein complexes. One
can predict possible binding sites in a complex based on
the protein structures in their unbound state. The bind-
ing partners can be single proteins or smaller protein–
protein complexes. To increase computing efficiency, the
proteins are usually modelled as rigid bodies at the first
six-dimensional (6D) global search stage. Most of these
global search methods are based on the convolution
of grids, where the surface of the binding partners are
parametrized such that an overlap between the surfaces
of the two binding partners becomes possible. The aim of
this surface description is to implicitly account for confor-
mational changes upon binding. The convolution of the
grids is accelerated by fast Fourier transformation (FFT)
[2–5]. In the simplest approach, the convolution produces
possible docking positions based solely on the shape of
the proteins. However, more sophisticated grid maps exist
which take chemical and knowledge-based properties into
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account. For refining the initial predictions, various meth-
ods are commonly applied, for instance Monte Carlo
(MC) simulations [6, 7], clustering [8, 9], or side-chain
optimization using rotamer libraries [10]. As computa-
tion time is usually the limiting factor, an MC simulation
should start from a conformation close to the binding site.
A complete global search with this method in a reasonable
computing time would be impossible.
The global search, which is performed via ZDOCK in

this study [11], usually finds many similar solutions [4].
Therefore, it is common practice to cluster and rerank
the docking predictions. Reranking classifies and distin-
guishes native or near-native solutions from non-native or
wrong predictions [12, 13]. The number of predictions in a
cluster can also be used for reranking [14]. The aim of both
approaches is to narrow down the list of possible inter-
action sites, significantly decreasing computational cost
and effort for further analysis of the remaining docking
predictions.
To investigate protein–protein complexes produced by

ZDOCK, docking approaches that allow for more pro-
tein flexibility than ZDOCK with low time expendi-
ture are needed. A coarse-grained force field should
be a good choice here. Various coarse-grained force
fields have already been developed for the treat-
ment of protein–protein complexes, including the cal-
culation of thermodynamic and structural properties
of multi-protein complexes with relatively low bind-
ing affinities [15]. Coarse-grained models are also
used for molecular dynamics (MD) simulations of
protein–protein association [16, 17], where the pro-
teins are modelled using the MARTINI force field
[18, 19] or with a Go-model approach [20]. In the latter
approach [17], the electrostatic and hydrophobic inter-
actions between proteins are modelled via a Coulomb
potential with a distance dependent dielectric constant
and the Miyzawa-Jernigan potential [21].
In the current study, we apply the coarse-grained ‘Opti-

mized Potential for Efficient structure Prediction’ (OPEP)
[22] to the protein–protein docking problem. A coarse-
grained force field is used because of the reduced num-
ber of degrees of freedom, making it computationally
more efficient than an all atom potential. Moreover,
it is believed that a coarse-grained model will smooth
the underlying free energy landscape, facilitating explo-
ration of the corresponding phase space [23]. OPEP has
already been successfully employed with different tech-
niques, including MD and MC simulations. It was applied
to RNA/DNA/protein systems to investigate the effect
of crowding, to amyloid formation, and for protein 3D
structure prediction. A recent overview of OPEP and its
applications can be found in [22]. This work investigates
OPEP’s applicability to protein–protein complexes. To test
its performance for protein–protein docking, the first step

is to investigate the discriminating power of OPEP to
distinguish between correctly and wrongly docked com-
plexes. We use global docking predictions produced by
ZDOCK which we coarse grain and energy minimize
using OPEP, followed by rescoring with an OPEP-based
soft potential. Moreover, we enhance the performance of
the rescoring function via an iterative learning procedure
and test the resulting scoring function on a subset of the
Dockground benchmark [24].

Methods
We perform unbound docking, which starts from the
binding partners in their native conformations. Themeth-
ods applied for predicting and rescoring protein–protein
complexes can be summarized via the following pipeline:
For each of the 96 targets we produce 54,000 docking pre-
dictions with ZDOCK and retain the best 2000 of these
complexes, as recommended by the ZDOCK developers.
These predictions are energy minimized using the OPEP
force field (step (1) in Fig. 1). For each prediction we
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Fig. 1 The training scheme for the side chain–side chain interactions.
Every prediction is minimized (1) and rescored (2). Each prediction is
classified as either TP, FP, FN, or TN (3). For each of these classes, an
average contact map is created. Contact maps are shown for an
artificial example containing only three residues. To train the
potential, the side chain–side chain interaction a/b is selected
because it is more frequent in TP and FN predictions than in FP and
TN (4). The side chain–side chain interaction a/c, on the other hand, is
selected because it is more frequent in FP and TN than in TP and FN
predictions (4). The a/b interaction is strengthened by decreasing its
energy, while the a/c interaction is disfavoured by increasing its
energy (5). This leads to the new scoring function Etrained86 , with which
the predictions are rescored. Steps (3) to (6) are iterated 30 times on
the training dataset
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perform 140 minimization steps in full Cartesian space
with the limited-memory Broyden–Fletcher–Goldfarb–
Shanno (LBFGS) minimizer [25], which leads to mini-
mization times between 3.5 s for the target with PDB ID
1AY7 (185 amino acids) and 250 s for the target with
PDB ID 2HMI (1413 amino acids) on a single CPU core.
This amounts to an overall minimization time for the
2000 ZDOCK predictions per target of less than 24 h for
85 % of targets. Afterwards, theminimized predictions are
reranked. For this, we replaced the side chain–side chain
interaction potential of OPEP with a softer 8-6 Lennard-
Jones-potential, while preserving the optimal distances
and energies (step (2) in Fig. 1). At this stage, the OPEP
potentials for salt bridges, interactions involving backbone
atoms, and H-bonds are not changed. In a further step,
we trained the parameters of side chain–side chain inter-
actions, including salt bridge interactions with an iterative
learning approach with the aim of further improving the
performance of the OPEP-based rescoring function (steps
(3)–(6) in Fig. 1). The resulting scoring function is tested
on another dataset to independently prove its ability to
distinguish between native and non-native complexes.

The dataset
We use two different benchmarks to perform unbound
docking. ZDOCK benchmark 4.0 is used as training
dataset, while for further evaluation we use the Dock-
ground benchmark 2.0. We used a subset of ZDOCK
benchmark 4.0 [26]. We downloaded the docking predic-
tions for 6° angular sampling from the ZDOCK website,
which were obtained using ZDOCK 3.02 [27]. Ninety-six
complexes were selected, including 39 enzyme/inhibitor,
19 antigen/antibody, and 38 other types of complexes. The
latter will be called ‘other complexes’ for the remainder of
this paper. One condition for selecting these complexes is
that ZDOCK found at least one hit in the top 2000 pre-
dictions. A hit is defined as a prediction with an interface
root mean square deviation (IRMSD) from the target of
lower than 4 Å. Complexes that contain small molecules
like ATP and GTP, for which OPEP is not parametrized,
were not considered. The 1N2C complex could not be
used, because it has more than 15,000 beads after coarse
graining and the fixed file format for parametrization in
OPEP currently only allows for up to 9999 beads.
The second dataset is a subset of the Dockground

benchmark [24]. Here we follow the same selection
criteria as for the ZDOCK benchmark. Furthermore,
we remove complexes present in ZDOCK benchmark
4.0 in order to generate an independent and unbi-
ased test set. The resulting test set contains 74 targets
with 18 enzyme/inhibitor, 16 antigen/antibody, and 40
other complexes. As before, to generate complex pre-
dictions we applied ZDOCK with 6° sampling, using a
local ZDOCK 3.02 installation and keeping the top 2000

predictions. As in the ZDOCK dataset, the docking for the
antigen/antibody complexes was restricted to the comple-
mentarity determining regions (CDRs).

ZDOCK
ZDOCK is an FFT-based rigid-body protein–protein
docking algorithm. During the search procedure one pro-
tein is kept fixed, while the other is moved around it.
The fixed protein is usually the larger of the two and is
called the receptor, while the other protein is the ligand.
ZDOCK generates grid-based representations from the
full atom chains of receptor and ligand and after each lig-
and rotation the grids can be fast convoluted via FFT. The
three rotational angles of the ligand are sampled with a
6° spacing, and the 3 translational degrees of freedom are
sampled with a 1.2 Å spacing. For each set of rotational
angles, only the best (based on ZDOCK score) transla-
tionally sampled prediction is retained [28]. This leads
to 54,000 ZDOCK predictions, of which we consider the
top 2000 for further refinement. To account for some
flexibility in ZDOCK, a soft docking approach is used
where the receptor has a 3.4 Å thick surface layer [3].
This allows for some overlap between receptor and lig-
and and accounts for possible movements during docking.
However, it may also lead to atom clashes between recep-
tor and ligand. The ZDOCK scoring function contains a
shape-complementary term [29], a knowledge-based con-
tact term for atoms and residues [11], and an electrostatic
term [30].

Missing residues and atoms
Some of the complex structures considered are missing
certain residues in the receptor and/or ligand. Although
this is no problem for a grid-based method like ZDOCK,
it must be resolved for treatment with OPEP. Miss-
ing residues lead to gaps in the backbone chain and, if
untreated, they would be considered overstretched bonds.
In order to resolve this problem, polypeptides with miss-
ing residues are treated as separate chains. The distance
between the terminal carbon and the terminal nitrogen
of the gap is kept fixed via a harmonic potential with the
equilibrium distance equal to the initial gap length and a
force constant of 100 kcal/(mol · Å2

).

OPEP
As rescoring function we use the coarse-grained potential
OPEP or variations of it. OPEP uses a six bead represen-
tation for every amino acid except proline and glycine.
The amino nitrogen N, the Cα , and the carbonyl carbon
C’ atoms of the backbone are each modelled by one bead.
In addition, the hydrogen H of the amino-group and car-
bonyl oxygen O are explicitly represented. Side chains are
described by only one bead, except for proline where all
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heavy side chain atoms are modelled. The local energy
terms in OPEP were developed based on the functional
form of the Amber force field [31] and several rounds of
minor adaptations to the side chain–side chain interac-
tions have been conducted [22]. We use the latest version
of OPEP, OPEPv5 [32], which for the first time includes an
explicit potential for salt bridges that were parametrized
with an iterative Boltzmann inversion method with
parameters extracted from all atom MD simulations.
A complete description of the OPEP potential can be
found in the original OPEP publications [22, 31–33].
Here, we only present the nonbonded interactions, as
they are used to rescore the protein–protein complexes.
The nonbonded potential consists of four terms: (1) van
der Waals interactions involving backbone atoms (EVDW),
(2) hydrophobic and hydrophilic side chain–side chain
interactions (ESS), (3) hydrogen bond (H-bond) interac-
tions between backbone atoms (EHB), and (4) a potential
for salt bridges (ESB). Interactions between side chains
ESS are modelled differently for attractive and repulsive
interactions [34]:

ESS=

⎧⎪⎪⎨
⎪⎪⎩

εij

[(
G
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)
(rij)6

)
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, if εij >0 (1)
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where rij is the distance between interacting beads i and j,
the equilibrium distance σij is correlated with r0ij via
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Figure 2a shows a matrix of the energies of the side
chain–side chain interactions at the minimum distances
σij. Equation (1) replaces the common 12-6 Lennard-
Jones potential in order to limit ESS at longer distances.

Figure 2b shows an example of the form of the potential
for the Phe/Phe interaction. For proline and glycine the
center of interaction is the Cα-atom, while for all other
side chains the interaction center is a bead representing
the center of mass of the side chain [33]. The poten-
tial ESS is not used for salt bridges between side chains.
Instead, salt bridges are modelled with a potential, ESB,
derived from all atom MD simulations [32], where the
distance dependent contact probability is translated to
free energy profiles. These free energy profiles have one
minimum for Arg/Asp and Arg/Glu pairs and two min-
ima for Lys/Asp and Lys/Glu interactions. To describe
backbone–backbone and backbone–side chain interac-
tions, OPEP contains a van der Waals term, EVDW, which
is modelled via a 12-6 Lennard-Jones potential. H-Bond
interactions, EHB, are modelled between the backbone N-
H and the backbone C’-O atoms. In addition, OPEP has
special terms for stabilizing α-helices and β-sheets. The
two-body term for H-bonds between residues in the same
chain has different equilibrium distances for H-bonds less
than five residues apart and for H-bonds further than four
residues apart. For stabilizing α-helices, the intra-chain
potentials also contain a 4-body H-bond term. Further-
more, 11 side chain–side chain interactions were identi-
fied to be more frequently found in (i, i + 3) and (i, i + 4)
contacts in α-helices. Therefore, these side chain–side
chain interactions with this particular separation were
made more attractive [34].

The scoring function
Before rescoring the predictions, we perform an energy
minimization using OPEPv5 to relax the complexes after
their transformation from the grid presentation to the
coarse-grained model. We perform 140 minimization
steps, as we found this to be the best compromise between
computational efficiency and optimization result. We
tested the effect of fewer and more minimization steps.

Fig. 2 The OPEP force field. a The potential energy ESS + ESB for side chain–side chain interactions is shown at the energy minimum, which is at σij
for ESS. For Arg/Asp and Arg/Glu, the average of the two minima for ESB is shown. Repulsive interactions, corresponding to energies higher than
zero, are also plotted at σij . b The OPEP potential ESS is shown together with the soft function ESS86 for Phe/Phe
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Extending the minimization beyond 140 steps does not
change the outcome of the rescoring result as for ∼90 %
of the structures the energy only changes marginally at
this point. Moreover, it happens especially for misdocked
complexes that the energyminimum has not been reached
within 140 minimization steps. However, there is no need
to further optimize such misdocked decoys. Reducing
the number of minimization steps below 140 bears the
risk that also near-native structures have not been prop-
erly minimized yet, which would lead to a poor rank-
ing for them. For the scoring function we found that it
becomes more reliable if we introduce a softer poten-
tial, which allows for more overlap between the beads
than the original OPEPv5 energy function. To obtain a
softer scoring function we replace both the side chain–
side chain interaction potential, ESS from Eq. (1), and the
12-6 Lennard-Jones potential EVDW with an 8-6 Lennard-
Jones potential. This kind of soft potential is also used
in the Attract force field that was developed for protein–
protein docking [35]. We call the new potentials ESS86 and
EVDW86, and the formula for ESS86 is given as:

ESS86 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε
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ij
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ij
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Here, σ ′
ij = 0.866σij and ε′

ij = 9.481ESS(σij), with σij
given in Eq. (3). The values σ ′

ij and ε′
ij are chosen such that

the minimum energies at the equilibrium distances are
identical for ESS and ESS86. From Eq. (6), one can see that
the repulsive-only potential is not modified. An example
of the attractive ESS86 term is shown in Fig. 2b for the
Phe/Phe side chain interaction. As the 8-6 potentials ESS86
and EVDW86 have broader wells than in OPEPv5, some
overlap between beads is tolerated and, in addition, imper-
fectly fitted contacts are more strongly attractive at larger
distances. The potentials for H-bonds and salt bridges
were not modified, leading to our new scoring function,
E86, with the modified potentials EVDW86 and ESS86:

E86 = EVDW86 + ESS86 + EHB + ESB, (7)

which calculates the binding energy between receptor and
ligand for scoring purposes. It should be noted that each
binding partner can consist of several proteins (chains).
We consider all chains from one binding partner as a sin-
gle protein. Hence, we only consider non-bonded energies
between the two binding partners, e.g., between receptor
and ligand.

Interface RMSD
The interface RMSD (IRMSD) is defined as the RMSD
between Cα interface atoms of the co-crystallized model
and the prediction after superposition. Interface Cα atoms

are all atoms within 10 Å distance of the binding partner
in the co-crystallized complex [36]. For the superposition
we use the corresponding function from Biopython [37].

Definition of a hit
As is standard [38, 39], we define a hit as a docked
conformation with an IRMSD lower than 4 Å.

Performance evaluation
The performance is evaluated by ranking the predictions
according to their (re)scoring energy in increasing order.
From this list, the best ranked prediction with an IRMSD
lower than 4 Å is reported. Furthermore, we calculate the
success rate, which is a function of the number of predic-
tions, Npred, that we consider from the sorted prediction
list. This is averaged over the number of targets, Ntarget,
and is calculated according to following equation:

success rate(Npred) = 1
Ntarget

Ntarget∑
i=1

Si(Npred), (8)

where Si(Npred) = 1 when the subset of Npred =
1, 2, . . . , 2, 000 predictions contains at least one hit, other-
wise Si(Npred) = 0. Thus, the success rate corresponds to
the probability of finding the native complex among the
Npred first models based on the (re)scoring energy.

Training the scoring function
After minimization, a residue-residue contact map
between receptor and ligand is produced for each pre-
diction. A contact is present if any of the beads of two
residues are closer than 8 Å. Depending on the ranking
with E86, one can classify the predictions for each com-
plex into one of the four groups: true positive (TP), false
negative (FN), false positive (FP), and true negative (TN).
TPs have an IRMSD < 4 Å and rank lower than or equal
to 20, while the TN predictions have IRMSD ≥ 4 Å and
a rank higher than 20. All other predictions are either
FNs or FPs depending on whether their IRMSD is < or ≥
4 Å and their ranking is > or ≤ 20. We only consider
the first N = 20 TPs or, if N < 20 hits are found, we
consider only those, because ideally one wants the cor-
rect predictions within the top hits. Twenty complexes is a
small enough number for further processing by computa-
tionally more expensive approaches and visual inspection.
We further limit the number of FNs and FPs to 20 − N
for training purposes. Thus, we do not consider FN and
FP predictions if ≥ 20 hits are found for a target, as for
such targets E86 already produces satisfying results. For
each TP, FN, FP, and TN prediction considered, we calcu-
late the frequency map for residue-residue contacts and
average them over all targets for the enzyme/inhibitor,
antigen/antibody, and other complexes. Next, we select
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residue-residue contacts where the frequency is higher in
the maps for TP and FN than for the FP and TNmaps. We
assume these contacts need to be strengthened, so cur-
rent FN predictions become TP without further favoring
FP predictions. Therefore, we decrease the energy value
ESS86 or ESB for this contact. The other contacts, for which
we modify the potential, are those where the frequency
of TPs and FNs is lower than FPs and TNs. It appears
these contacts are not important for the complex class in
question and should thus be disfavored, with the aim of
transforming a current FP prediction into a TN predic-
tion. Therefore, we increase ESS86 or ESB for such contacts.
Figure 1 illustrates the training procedure.
The amount of change for the selected interaction

between residues i and j is determined by the ratio
between the corresponding FNij and FPij frequencies. A
value greater than one means this interaction energy has
to be decreased, while the opposite indicates this interac-
tion energy has to be increased. We do this by changing
the interaction potentials ESS86(i, j) and ESB(i, j) according
to

EtrainedX (i, j) = EoldX (i, j) − k ln
(FNij

FPij

)
, (9)

where EX = ESB or EX = ESS86 depending on the residue
contact (i, j). For the parameter k, values between 0.1 and
0.6 were tested, and k = 0.2 was found to be optimal.
Equation (9) was iteratively applied. Thus, we had to deter-
mine when to stop the training for best parametrization
and to avoid overfitting. To this end, we performed a
4-fold cross-validation on the enzyme/inhibitor training
dataset, which gives us meaningful numbers for train-
ing and validation. This enzyme/inhibitor set contains
39 targets, of which 29 complexes were used for train-
ing, with the remaining 10 used for cross-validation.
For these 10 targets, we measured the quality with∑10

i=1 ln(rank(targeti)), where rank() returns the rank of
the best ranked hit. This function should decrease during
training, while an increase is indicative of overfitting. We
observe that overfitting becomes an issue after 30 itera-
tions of Eq. (9). Therefore, we set the number of learning
iterations to 30, yielding our new scoring function Etrained86 :

Etrained86 = EVDW86 + EtrainedSS86 + EHB + EtrainedSB (10)

Results
Overall performance
The ranks of the first hit using ZDOCK and after rescor-
ing are shown in Table 1. The ZDOCK column gives
the results for ZDOCK 3.02. The Einitial86 column shows

the rank after rescoring using Eq. (7) before energy min-
imization with the OPEP potential, while the E86 col-
umn reports the rank after minimization. Column five
reports the rank of the first hit when using all intra- and
interprotein contributions of the original OPEPv5 poten-
tial [32], while column six shows the rank of the first
hit when the predictions are ranked by OPEPv5 energy
when only the non-bonded energies between beads from
the receptor and ligand are considered. These rescoring
energies are denoted by EOPEP and EintOPEP in the fol-
lowing. Figure 3 represents the success rate as defined
in Eq. (8) for the different complex classes. In general,
ZDOCK and E86 perform better than EOPEP and EintOPEP
and their performance is about equal if one considers
the overall performance for all complex classes (Fig. 3a).
However, there are differences between the three complex
classes.

Enzyme/inhibitor
For enzyme/inhibitor complexes, E86 finds equal or more
hits if more than four predictions are considered, i.e.,
Npred ≥ 5 (Fig. 3b). When considering more than 50 pre-
dictions, E86 becomes substantially better than ZDOCK.
Table 1 shows that we can improve or maintain the rank
using E86 for 25 out of 39 enzyme/inhibitor targets. For
1AVX, the rank is only slightly worse, increasing from 1
with ZDOCK to 3 with E86. Comparing the performance
of E86 to EintOPEP, it becomes evident that the 140 mini-
mization steps are not always sufficient to put every side
chain in the minimum of the well, because the rank with
EintOPEP is considerably higher than for E86. Thus rescor-
ing with the softer potential is necessary. When using
EOPEP for ranking, the ranks of only 16 targets are kept
or improved. The average rank shows that E86 is gener-
ally better than ZDOCK, while EintOPEP produces a similar
ranking to ZDOCK, and EOPEP performs worst.

Antigen/antibody
For antigen/antibody complexes, rescoring with E86 was
least successful. For Npred � 500, the success rate of
E86 is clearly smaller than for ZDOCK (Fig. 3c). Out of
19 antigen/antibody complexes, E86 improves the rank
for only six targets and worsens it for the other 13.
Using EOPEP only improves the ranking of six com-
plexes, while the rank of only one complex can be
improved using EintOPEP. The average rank shows that
ZDOCK performs considerably better than any of the
OPEP-based rescoring approaches. However, it should be
noted that ZDOCK is not a perfect scoring function either
for antigen/antibody complexes, as revealed by compar-
ing the average ZDOCK ranks with enzyme/inhibitor
complexes.
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Table 1 Best rank for (re)scoring with ZDOCK, Einitial86 , E86, EOPEP,
and EintOPEP for complexes from the ZDOCK benchmark 4.0.∅
indicates the average rank for the complex class in question
Complex ZDOCK Einitial86 E86 EOPEP EintOPEP

Enzyme/inhibitor

1ACB 47 11 14 1 16
1AVX 1 128 3 27 31
1AY7 330 205 358 730 858
1BVN 1 39 1 98 1
1CGI 28 52 9 2 70
1CLV 1 2 1 1 1
1DFJ 1 102 1 14 4
1EAW 332 194 151 469 124
1EZU 121 919 11 946 559
1F34 176 428 2 1664 79
1FLE 1797 179 223 35 424
1GL1 49 116 8 107 34
1GXD 229 84 2 4 47
1HIA 389 88 901 1300 1392
1IJK 1296 924 355 70 5
1JIW 1350 504 553 989 851
1JTG 1 5 1 23 9
1MAH 1 80 87 9 27
1NW9 750 105 392 857 569
1N8O 11 11 14 9 12
1OC0 225 82 240 70 83
1OPH 28 150 422 903 822
2O8V 34 20 502 112 308
1OYV 3 34 1 2 381
1PPE 1 7 1 1 2
1R0R 533 896 40 151 856
1TMQ 7 228 3 295 1
1UDI 9 446 2 158 2
1YVB 11 86 47 220 67
2ABZ 689 670 772 619 1121
2B42 1 57 40 44 192
2J0T 1730 677 179 579 178
2MTA 1 122 104 13 43
2OUL 1 30 1 23 1
2SIC 1 145 1 3 5
3SGQ 309 158 16 596 260
2UUY 258 279 65 180 361
4CPA 1 1 4 1 20
7CEI 1 30 55 51 9
∅ 275.7 212.7 143.1 291.7 251.9

Antigen/antibody

1AHW 1387 542 1087 1161 1563
1BJ1 1 20 132 89 230
1BVK 10 143 356 6 283
1DQJ [a] 1671 150 – – –
1E6J 8 8 39 21 10
1FSK 5 5 181 135 373
1I9R 31 39 177 23 109
1IQD 2 41 1 4 1
1JPS 1261 221 14 1635 1930
1KXQ 6 192 34 532 9
1K4C 120 201 1077 14 166
1MLC 188 1194 104 395 314
1NCA 389 331 774 1091 1340
1VFB 45 163 198 33 586
2FD6 2 82 20 16 268

Table 1 Best rank for (re)scoring with ZDOCK, Einitial86 , E86, EOPEP,
and EintOPEP for complexes from the ZDOCK benchmark 4.0.∅
indicates the average rank for the complex class in question
(continued)

2HMI 62 178 516 4 766
2I25 12 2 7 45 39
2JEL 22 85 18 49 139
2VIS 725 557 1538 625 1095
∅ 313.0 246.1 435.4 414.6 485.3

Other complexes
1AKJ 754 47 1823 787 1887
1B6C 1 13 1 1 1
1BUH 62 25 304 10 2
1DE4 4 472 38 39 52
1F51 9 22 32 166 176
1FC2 1286 1672 1654 896 224
1FFW 41 47 47 111 433
1GLA 210 326 1013 329 1296
1GPW 3 2 1 111 997
1H9D 203 53 386 297 345
1HE1 821 1837 871 1907 1702
1I2M 354 828 3 482 262
1JK9 998 735 305 891 552
1JZD 31 141 208 3 92
1K74 1 26 1 110 717
1ML0 1 12 2 2 3
1RV6 1 188 4 1 2
1S1Q 1696 925 780 1635 932
1SYX 149 345 123 24 781
1T6B 439 224 14 130 30
1US7 150 107 772 283 341
1WDW 1 3 23 12 326
1XD3 3 25 1 1 1
1XU1 37 69 5 6 1
1Z5Y 31 1 1 1 1
1ZHI 187 43 608 156 471
2AJF 1115 318 1029 195 494
2A5T 824 421 148 573 1149
2AYO 6 112 3 700 902
2CFH 1 18 1 3 3
2HLE 54 29 20 52 74
2HRK 2 76 64 30 5
2IDO 171 314 73 577 11
2NZ8 1002 281 81 793 243
2VDB 43 36 1 13 309
2Z0E 123 181 187 684 1346
3BP8 998 375 131 538 242
3D5S 524 29 1 34 246
∅ 324.6 273.1 283.1 331.1 438.2

[a] The rank is set to 2000 for calculating the average

Other complexes
For other complexes, the success rate is always higher for
rescoring with E86 than scoring with ZDOCK, indepen-
dent of the number of predictions considered (Fig. 3d).
The E86 score improves or maintains the rank of 21
complexes and worsens it for the other 17; however, for
1ML0 the rank only changes from 1 to 2 and 1RV6 from
1 to 4. While EOPEP improves the rank of 20 targets and
worsens the rank of 18 targets, the improvements mostly
occur for higher ranks, and only four predictions have
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Fig. 3 Results for the training dataset ZDOCK benchmark 4.0. The success rate is shown for (a) all complexes and separately for the three complex
classes, (b) enzyme/inhibitor, (c) antigen/antibody and (d) other complexes using ZDOCK (red) and E86 (blue)

rank 1, compared with eight for E86. EintOPEP can improve
the rank of only 15 targets; it worsens the rank of the
other 23. On average, for other complexes rescoring with
E86 performs best, EintOPEP is least suited for this task, and
EOPEP predicts a similar ranking as ZDOCK. From the
strikingly different performance of E86 and EintOPEP it seems
that optimal shape complementarity implying favourable
residue-residue interactions are very important for pro-
tein binding in this complex category.

Structural changes upon energy minimization
We tested whether the structures of the complexes are
affected as a result of energy minimization with the OPEP
potential. To this end, the secondary structures of the
complexes are determined before and after their energy
minimization using STRIDE [40]. Since we use crystal
structures of the unbound receptor and ligand as input,
all 2000 ZDOCK predictions per target have the same
secondary structures before minimization, while the sec-
ondary structures can change during minimization with
the OPEP potential. However, we find that the changes
in secondary structure are generally small (< 5 %). Espe-
cially the near-native structures with IRMSD < 3 Å are
least affected by energy minimization, indicating that
the correct binding helps stabilize the complex struc-
ture. However, the overall changes of secondary structure
are small and do not follow a pattern, which prevents

us from generalizing a dependency between IRMSD and
secondary structure.
We further tested if the IRMSD is affected by mini-

mization with OPEP and found it changes only slightly.
A plot showing the average change of IRMSD as a func-
tion of the initial IRMSD as obtained from ZDOCK
can be seen in Fig. 4. For most predictions, the IRMSD
slightly increases due to minimization with the aver-
age IRMSD change fluctuating aroud 0.1 Å. For some
of the complexes, the IRMSD also decreases: for 4.3 %
of the predictions with IRMSD < 4 Å before mini-
mization, which increases to 8.7 % if one considers all
predictions. The preferred IRMSD increase for near-
native predictions is likely to be an effect of the tight
packing at the binding site, which leads to more bead
clashes after transformation from the grid to the coarse-
grained representation, causing the atoms or beads to
reorient during minimization. Nonetheless, the structures
stay close to the conformations predicted by ZDOCK, as
Fig. 4 testifies. Only for severely misdocked complexes
(IRMSD � 35 Å) the IRMSD change increases to around
0.2 Å.
Comparison of columns three and four of Table 1 reveals

the effect of minimizing the energy before rescoring with
E86. Column three reports the best rank without energy
minimization, which we denote as Einitial86 . For the com-
parison we concentrate on the complexes for which either
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Fig. 4 The average change in IRMSD as a result of energy
minimization of the ZDOCK predictions using OPEP. Averages,
calculated over all targets and complex classes, are shown in blue
together with one standard deviation

E86 or Einitial86 , or both, predict a best rank ≤ 10 as in the
Critical Assessment of PRedicted Interactions (CAPRI)
experiment [41] one can only upload 10 predictions per
target. Thus, the aim is to score the decoys closest to
the native structure in the top 10. For enzyme/inhibitor
complexes, energy minimization is most successful as E86
identifies for more than 38 % a hit in the top 10 predic-
tions (see success rate for Npred = 10 in Fig. 3b). For
only four of these 15 complexes (namely 1CLV, 1JTG,
1PPE and 4CPA) also Einitial86 predicts best ranks in the
top 10, while it does not occur for enzyme/inhibitor com-
plexes that Einitial86 finds a hit in the top 10, which is lost
upon energy minimization. In two cases (1F34 and 1UDI)
energy minimization improves the rank by more than 400
places, leading to second places in the rank list. A sim-
ilar picture emerges for other complexes, for which for
more than 34 % of the complexes a best rank in the top
10 is found with E86 (see success rate for Npred = 10 in
Fig. 3d). With Einitial86 , on the other hand, for only three
complexes a top-10 rank is achieved. For one of these
three (1WDW) the rank increases from 3 to 23 upon
energy minimization, while the other two are also top-
10 ranked with E86. Only for antigen/antibody complexes
preceding energy minimization of the complexes offers no
advantage over direct application of the rescoring func-
tion. E86 and Einitial86 find for 2 and 3, respectively, of the
19 complexes a hit in the top-10 rank list. For two com-
plexes (1E6J and 1FSK) the top-10 rank is lost after energy
minimization, while for 1IQD the best rank climbed 40

places and is ranked first with E86. However, it should
be noted that the average rank for Einitial86 is considerably
lower than for both ZDOCK and E86. Thus, energy mini-
mization of antigen/antibody complexes is not absolutely
necessary. Though apart from saving us computing time,
omitting this step would also not (considerably) increase
our chances of identifying the right prediction as the
increase of the average rank for E86 originates mainly from
further deterioration of the already high ranks obtained
with Einitial86 (e.g., complexes 1AHW, 1K4C and 2VIS).
More crucial would be a general improvement of the E86
scoring function for its application to antigen/antibody
complexes.

Energy contributions to the protein-protein interactions
Figure 5 shows the different contributions to the E86
energy for predictions sorted by their IRMSD using
a bin size of 1 Å. We show the averaged values of
ESS86, ESB, and EHB for the three complex classes. For
the enzyme/inhibitor complexes, a minimum in ESS86 is
present for predictions up to 5 Å. However, for IRMSD
values above 25 Å ESS86 becomes small again, in some
cases even smaller than for the hits. This is more than
counterbalanced by the H-bond energy, as only near-
native hits have more and better oriented H-bonds,
leading to EHB values more than 10 kcal/mol smaller than
for all other predictions. Salt bridges seem to be of minor
importance for the protein binding in enzyme/inhibitor
complexes, as there is no correlation between the ESB
values and the IRMSD, and the contribution of ESB to
E86 is generally small, with all values fluctuating around
−5 kcal/mol. Thus, the sum of ESS86 and EHB is mainly
responsible for distinguishing between correct and incor-
rect complex predictions. This partly agrees with previ-
ous findings that protease-inhibitor complexes interact
predominantly through main chain–main chain interac-
tions [42], which are represented by H-bonds in the E86
function.
For antigen/antibody complexes, none of the three

energy contributions clearly decreases with decreasing
IRMSD. Instead, both ESS86 and EHB adopt their small-
est values for IRMSD ≈ 20 Å, which explains why E86
does not perform well for this complex class. Compared
to enzyme/inhibitor complexes, backbone H-bonds are
less important for the native complex. This agrees with
the previous observation that antigen and antibody com-
plexes predominantly bind through side chain–side chain
or side chain–main chain interactions [42], which are
represented by other contributions from E86 but not by
EHB. For antigen/antibody complexes, the formation of
salt bridges is also of minor importance. There is only one
exception, at IRMSD ≈ 34 Å, where with ESB ≈ −13
kcal/mol the smallest salt bridge energy is observed, also
taking the other two complex classes into account.
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Fig. 5 The different contributions of the rescoring function E86 for the different complex classes, (a) enzyme/inhibitor, (b) antigen/antibody and (c)
other complexes as a function of the IRMSD: (left) ESS86, (middle) ESB, (right) EHB. Averages, calculated over all targets and predictions for each target
belonging to one of the three complex classes, are shown together with one standard deviation

The hits for other complexes are stabilized by side
chain–side chain interactions, as the lowest values for
ESS86 are found for the complexes with IRMSD < 4 Å. H-
bonds seem to be of minor importance for binding recep-
tor and ligand in this complex category, as all EHB values
are > −1 kcal/mol, an order of magnitude higher than
those in enzyme/inhibitor and antigen/antibody com-
plexes. On the other hand, other complexes are the only
ones where salt bridges contribute to stabilizing the com-
plexes, as for IRMSD > 5 Å, ESB increases. This trend
only breaks for IRMSD ≤ 5 Å as ESB does not further
decrease for the near-native predictions. This means that
either ESS86 dominates these binding modes or the E86
potential can be further improved in this range.

Improving the rescoring function
Next we tested if the performance of E86 can be enhanced
by training it according to Eq. (9), yielding the new rescor-
ing function Etrained86 defined in Eq. (10). As the energy
analysis revealed that complex formation in the three

categories is driven by different interactions, we decided
to optimize E86 separately for enzyme/inhibitor, anti-
gen/antibody, and other complexes. The resulting Etrained86
leads to new energies at the optimal distances between the
side chains at the binding sites, which can be presented
as a matrix. Subtracting the new energy matrix from the
original potential energy matrix shown in Fig. 2a gives
a matrix for each complex category that represents the
change in interaction energies. These matrices are shown
in Fig. 6.

Enzyme/inhibitor
With few exceptions, the change in interaction energy
follows the hydrophobicity of the amino acids. This con-
firms the findings from Fig. 5 that the enzyme/inhibitor
complexes are stabilized by the interactions modeled by
ESS86. The amino acids Phe to Ala are the hydropho-
bic amino acids, and interactions between them got
stronger, except for Phe/Val and Phe/Ala. Most interac-
tions involving polar amino acids do not change much,
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Fig. 6 The change in minimum energy for side chain–side chain
contacts as a result of training the scoring function E86 for (a)
enzyme/inhibitor, (b) antigen/antibody, and (c) other complexes. Blue
values mean the interaction became more attractive, redmeans the
interaction became more repulsive. Note the different energy scales
for the protein classes

while some of the interactions involving charged residues
become more repulsive. Previous studies also found that
enzyme-inhibitor complexes contribute more hydropho-
bic interactions at the expense of polar contributions
[42]. The most pronounced changes occur for Trp/Trp,
Met/Trp, Glu/Ile, and Asp/Phe. The increased stability
for Trp/Trp agrees with the Ravikant-Elber matrix [43],
which was derived as the most likely interaction from
a statistical analysis of protein–protein complexes. The
Met/Trp interaction is also favoured by the Ravikant-
Elber matrix. Both interactions were already attractive
in the E86 rescoring function, but become even stronger
as a result of the optimization procedure. Glu/Ile and
Asp/Phe, on the other hand, were repulsive in E86 and
become more so. Glu/Ile is also slightly repulsive in the
Ravikant-Elbermatrix, while Asp/Phe is slightly attractive.
However, the Ravikant-Elber matrix includes protein–
protein interactions independent of complex class, while
our current finding only applies to enzyme/inhibitor
complexes.

Antigen/antibody
Figure 6b shows the change in interaction energies for
antigen/antibody complexes. Surprisingly, two interac-
tions involving cysteine, namely Cys/Ile and Cys/Glu, con-
siderably increase in strength. This probably results from
the presence of a Cys residue just before the start of most
of the CDRs [44], which is thus in contact with the antigen.
The interaction between Met residues becomes the most
repulsive. Before training it was slightly attractive. This
change in energy is difficult to rationalize; many of the
other changes are correlated to the frequency of residues
at the antigen–antibody interface. At the paratope of the
antibody, the residues that contribute most to the bind-
ing are Tyr, Trp, Asp, Glu, Asn, Ser, Thr, and Gly, while
at the antigen epitope these are Arg, Lys, Asp, Tyr, Glu,
Asn, Ser, Thr, and Gly [42]. Many of the interactions
involving these residues becomemore attractive, while the
remaining interactions do not change much in strength.
This shows that our training scheme can strengthen
interactions which have been previously shown to
play an important role in antigen–antibody binding
[42, 45].

Other complexes
The difference map for the other complexes can be seen
in Fig. 6c. As with enzyme/inhibitor complexes, most
hydrophobic interactions become more attractive. The
exception is Trp/Val, for which the interaction became
more repulsive. Previously, this interaction was only
slightly repulsive. Almost all of the polar/hydrophobic
interactions become more repulsive. Interestingly, the
His/His interaction becomes considerably more repul-
sive, which corresponds well with repulsion of equal



Kynast et al. BMC Biophysics  (2016) 9:4 Page 12 of 17

charges when His is positively charged. Before training,
this interaction was attractive. The repulsion between
the equally charged residues Glu/Asp and Arg/Lys also
increased, but these were already repulsive before opti-
mization. The salt bridges, with the exception of Lys/Asp,
got stronger. Overall, this shows that electrostatics inter-
actions play a more important role here than in the
enzyme/inhibitor complexes. It also confirms the trend
from Fig. 5, which revealed a general decrease (apart
from a few exceptions) for ESS86 and ESB with decreasing
IRMSD.

Test on a new dataset
To test the optimized rescoring function, we use the
protein–protein complexes from the Dockground test
set [24], removing all complexes which are also in the
ZDOCK Benchmark 4.0 and were already used for train-
ing. The remaining 74 complexes are listed in Table 2.
As before, we perform unbound docking with ZDOCK
producing 2000 predictions for each target. However,
ZDOCK is not able to produce a hit for all targets in the
top 2000 predictions. In particular, ZDOCK is not very
successful for other complexes, generating hits for only 19
out of 40 of these complexes. However, it is successful for
15 out of 18 enzyme/inhibitor complexes and 12 out of
16 antigen/antibody complexes. For complexes for which
ZDOCK produced one or more hits, the 2000 predictions
are rescored using E86 and Etrained86 .

Enzyme/inhibitor complexes
Both OPEP-based rescoring functions can significantly
improve the average ranking compared to ZDOCK, and
Etrained86 performs better than E86. Compared to ZDOCK,
Etrained86 can improve or maintain the rank for 11 targets
and worsens the rank for 4 targets. However, for 1T6G
the ranking decreased by only three places, from two to
five. The standard soft rescoring function E86 can improve
or maintain the ranking for 10 and worsens the ranking
for 5 complexes. Figure 7a shows the success rate for the
enzyme/inhibitor complexes. Both OPEP-based rescoring
functions produce at least one hit in the top 1000 for all
targets (i.e., the success rate is one for Npred = 1000),
which is not the case with ZDOCK. The performance
of E86 is weak for Npred < 10, but when consider-
ing more than 10 predictions the results improve, and
E86 performs then better than ZDOCK and similar to
Etrained86 . This means the selectivity of the E86 function
near the native complex structure is not high enough;
this is improved by training the scoring function, yield-
ing Etrained86 . For Npred < 10, the performance of Etrained86 is
equal or better to ZDOCK. This finding shows that train-
ing the OPEP-based scoring function was successful for
the enzyme/inhibitor complex class.

Antigen/antibody complexes
ZDOCK finds hits in the top 2000 predictions for 12
out of 16 targets. Etrained86 can improve or maintain the
rank for five complexes. For 1G9M and 1SQ2, the rank
only decreases from 1 to 3 and from 1 to 2, respectively.
E86 performs less well, only improving the ranks of three
targets and worsening them for the other nine targets.
Figure 7b shows E86 has as many top-1 hits as ZDOCK
has, but its success rate dwindles when more predic-
tions are taken into account. Etrained86 , on the other hand,
performs best when between 2 and 12 predictions are con-
sidered, yet forNpred > 12 ZDOCK is still most successful
for antigen/antibody complexes. Nonetheless, training E86
was worthwhile, as for Npred > 1 the trained potential
always performs better than or equal to E86, improving the
average rank by more than 120 places (see Table 2).

Other complexes
For the other complexes, Etrained86 can (considerably)
improve the average ranking compared to ZDOCK and
E86. Both Etrained86 and E86 improve the ranks of nine targets
and worsen them for the other 10. However, with E86 the
ranking of these 10 targets is considerably increased, lead-
ing to an average rank more than 120 places higher than
the ZDOCK average. Figure 7c shows that Etrained86 per-
forms slightly better than ZDOCK for Npred > 20. How-
ever, the selectivity of Etrained86 should be further improved
for near-native predictions, i.e., its performance should be
increased for the top 20 predictions. However, this may
prove difficult, as the other complexes are a collection of
protein–protein complexes from different classes. Thus,
the protein–protein binding may be driven by different
interactions for the different complexes, making it diffi-
cult to fully accommodate all peculiarities within a scoring
function.

Medium and high accuracy predictions
In the CAPRI evaluation [41], where the predictions are
made blindly (i.e., without any knowledge of the cor-
rect answer), the predicted models are classified into four
categories: incorrect, acceptable, medium, and high accu-
racy. To this end, the combination of three parameters is
used, namely the fraction of native residue-residue con-
tacts (fnat), the RMSD of the ligand molecules in the
predicted versus the target complexes (LRMSD), and the
IRMSD. A detailed description of these parameters and
the corresponding thresholds used in classifying predic-
tions can be found in previous CAPRI reports [41, 46]. In
this work, only the IRMSD is used to assess the quality
of the predictions. Application of fnat requires an atom-
isitic representation of the predicted complexes as it is
defined based on contacts between any atoms of interact-
ing residues. Therefore, a transformation from the coarse-
grained OPEP to an atomistic representation would be
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Table 2 Best rank for (re)scoring with ZDOCK, E86, and Etrained86 for
complexes from the Dockground 2.0 benchmark

Complex ZDOCK E86 Etrained86

Enzyme/inhibitor

1ARO - - -

1AVW 2 (56/-) 12 (76/-) 46 (48/-)

1BTH 366 (-/-) 218 (-/-) 106 (-/-)

1CHO 3 (3/86) 5 (5/59) 1 (1/21)

1GPQ 1271 (-/-) 438 (-/-) 109 (-/-)

1ID5 72 (-/-) 11 (-/-) 4 (-/-)

1KU6 10 (62/-) 19 (74/-)) 14 (103/-)

1OFH - - -

1PPF 12 (12/36) 12 (12/109) 1 (1/13)

1T6G 2 (2/579) 22 (22/311) 5 (6/121)

1TX6 539 (610/-) 28 (28/-) 87 (1090/-)

1UGH 1 (1/1098) 1 (1/104) 1 (1/44)

1XX9 279 (-/-) 17 (-/-) 8 (-/-)

2BKR 4 (4/-) 18 (24/-) 33 (33/-)

2D26 - - -

2FI4 335 (1287/1287) 69 (69/182) 48 (48/86)

2KAI 269 (737/-) 287 (287/-) 75 (75/-)

3SIC 1 (6/24) 1 (1/1) 1 (1/1)

∅ 211.3 77.2 35.9

Antigen/antibody

1A2Y 5 (-/-) 21 (-/-) 3 (-/-)

1G6V 1344 (-/-) 1485 (-/-) 705 (-/-)

1G9M 1 (5/-) 4 (38/-) 3 (18/-)

2BNQ - - -

1BZQ 13 (13/13) 22 (22/61) 7 (43/274)

1FBI 609 (-/-) 1113 (-/-) 1174 (-/-)

1FNS 729 (-/-) 1055 (-/-) 1906 (-/-)

1H0D 159 (-/-) 17 (-/-) 1 (-/-)

1JTP 13 (-/-) 1 (-/-) 2 (-/-)

1MQ8 16 (98/-) 1479 (1548/-) 565 (807/-)

1NBY - - -

1NCB - - -

1NSN 562 (-/-) 695 (-/-) 949 (-/-)

1PKQ - - -

1SQ2 1 (16/-) 1 (6/-) 2 (8/-)

1Z3G 6 (6/-) 1273 (1273/-) 378 (378/-)

∅ 288.2 597.2 474.6

Other complexes

1BUI 343 (-/-) 1332 (-/-) 573 (-/-)

1F6A - - -

1FM9 1 (14/52) 2 (3/26) 2 (24/87)

1G20 11 (132/-) 15 (178/-) 12 (34/-)

1G4A - - -

1G4U - - -

1GHQ - - -

1GLB 1021 (-/-) 1356 (-/-) 1352 (-/-)

1HXY - - -

1JWM - - -

Table 2 Best rank for (re)scoring with ZDOCK, E86, and Etrained86 for
complexes from the Dockground 2.0 benchmark (continued)

1K90 - - -
1K93 - - -
1L9B - - -
1MA9 1 (4/-) 1 (3/-) 1 (1/-)
1NBF 91 (-/-) 105 (-/-) 106 (-/-)
1NVU 1020 (-/-) 555 (-/-) 192 (-/-)
1OMW - - -
1OOK 171 (-/-) 639 (-/-) 237 (-/-)
1P7Q 3 (433/-) 13 (139/-) 21 (215/-)
1R4M 9 (-/-) 201 (-/-) 27 (-/-)
1RQQ - - -

1S6V 1 (-/-) 9 (-/-) 7 (-/-)
1SQ0 - - -
1U0N - - -
1U7F 149 (936/-) 1508 (1875/-) 969 (1740/-)
1UEX 25 (872/-) 14 (578/-) 11 (457/-)
1V7P 76 (-/-) 52 (-/-) 13 (-/-)
1WLI - - -
1YI5 - - -
1ZY8 202 (325/435) 143 (527/1097) 54 (495/940)
2A42 - - -

2ATQ - - -
2B4S - - -
2CKH 1 (1/21) 1 (1/178) 1 (1/68)
2G45 912 (-/-) 682 (-/-) 438 (-/-)
2GD4 - - -
2GOO - - -
2GY7 - - -
3FAP 143 (-/-) 80 (-/-) 95 (-/-)
3PRO 158 (350/-) 41 (154/-) 136 (412/-)
∅ 228.3 355.2 223.5

[a] The rank is set to 2,000 for calculating the average
∅ indicates the average rank for the complex class in question. Targets without a
hit in the top 2,000 are indicated by ‘–’. Values in brackets show the best rank for
predictions with an IRMSD < 2 Å and < 1 Å, respectively. If such predictions are not
found, no value is being reported

first required for the calculation of fnat. This would prob-
ably entail an optimization of the side chain positions so
that the correct residue-residue contacts can form. While
desirable, this is, however, would be beyond the scope of
current study, which focuses on testing of OPEP as rescor-
ing function for protein-protein docking. Therefore, only
the IRMSD is used to classify the accuracy of predictions
as high if IRMSD ≤ 1 Å, medium if IRMSD ≤ 2 Å,
and acceptable if IRMSD < 4 Å [41, 46]. As we want to
know whether Etrained86 finds more predictions of medium
and high accuracy than E86, we determined the best ranks
using these thresholds for the predictions obtained for the
Dockground 2.0 test set. The results are listed in Table 2,
together with the ones discussed above for threshold
IRMSD < 4 Å.
Table 2 reveals that one problem of our current

approach is that ZDOCK does not produce many decoys



Kynast et al. BMC Biophysics  (2016) 9:4 Page 14 of 17

Fig. 7 The success rate for the different complex complex classes, (a) enzyme/inhibitor, (b) antigen/antibody, and (c) other complexes for the
Dockground test set when using ZDOCK (red), E86 (blue), and Etrained86 (green) as (re)scoring function

of medium or high accuracy in the top 2000 predictions.
This is particularly the case for antigen/antibody and
other complexes. For only one antigen/antibody com-
plex (1BZQ) decoys of high accuracy are predicted by
ZDOCK, while for 5 of the 16 complexes predictions
of medium accuracy are produced. For other complexes
ZDOCK performs even worse as for only 9 (3) of the
40 complexes predictions of medium (high) accuracy are
found. The ZDOCK results are somewhat better for the
18 enzyme/inhibitor complexes with decoys of medium
accuracy being found for 10 complexes and of high accu-
racy for 6 complexes. As in the current study only energy
minimization is used to optimize the geometry of the
decoys, which has only minor effects on the docking pose
(IRMSD changes of around 0.1 Å only, see Fig. 4), E86
and Etrained86 cannot find more decoys of high or medium
quality as being produced by ZDOCK. More structural
refinement of the ZDOCK predictions, for instance by
using MC simulations as done by RosettaDock [6, 47],
would be necessary for their further improvement. Com-
parison of the ZDOCK, E86 and Etrained86 scoring of decoys
of medium accuracy and with top-10 ranks shows that
Etrained86 performs best for enzyme/inhibitor complexes. In
this category, Etrained86 ranks the docking models for four
complexes first and for a fifth complex on sixth place. Also
ZDOCK has for five complexes such models ranked in the
top 10, however, for none on the first place. E86 predicts
for only three complexes top-10 ranks, however, for two
of them they are on the first place. For antigen/antibody
complexes, ZDOCK finds for two complexes models in
the top-10 rank list, while E86 and Etrained86 for only one
complex. For other complexes, E86 is slightly better than
ZDOCK and Etrained86 as it has for three complexes decoys
in the top-10 list, while the other two scoring functions
achieve this for only two complexes.
In summary, E86 and Etrained86 rank docking models of

medium accuracy on average better than ZDOCK (apart
from antigen/antibody complexes). For complex 3SIC
both OPEP-based rescoring functions even rank a high-
accuracy decoy first, which ZDOCK fails to achieve for

any complex; it does not even place any decoy of high
accuracy in the top 10. However, mainly due to limited
refinement of the dockingmodels obtained fromZDOCK,
both E86 and Etrained86 do not find quantitatively more dock-
ing models of medium and high quality. This is further
supported by the fact that for seven complexes (1BTH,
1XX9, 2BKR, 1G20, 1NBF, 1OOK, 3PRO), for which no
decoy of high (sometimes not even of medium) accuracy
and also no top-10 hit are found after rescoring, the native
(i.e., target) complex is ranked first or second by E86
and/or Etrained86 (data not shown). In these cases rescor-
ing with E86 and Etrained86 would have worked if the correct
decoys had been generated. It should be noted, however,
that in many other cases the native complex has a much
higher rank than the other decoys, also for complexes for
which top-10 predictions of medium or even high accu-
racy have been found. A similar observation was made
by Baker and co-workers [6] when the performance of
RosettaDock was for the first time tested. There, the prob-
lem was solved by performing 50 rounds of side-chain
repacking and minimization. We assume that also after
the transformation of the PDB structures to the coarse
grained representation, energy minimization is often not
sufficient for an optimal positioning of the side-chain
beads. In our future work we will test wether side-
chain refinement will improve the scoring of the native
complexes.

Discussion and conclusion
In this work we examined the applicability of the coarse-
grained OPEP force field [22] for refining and rescor-
ing rigid body protein–protein docking predictions. We
use ZDOCK [11] to produce protein complex predic-
tions, which also serves as quality control. The predictions
from the ZDOCK benchmark 4.0 are transformed to the
coarse-grained model and their energy minimized using
the original OPEP potential, which is followed by rescor-
ing with a softer energy function, denoted E86, based
on the interprotein OPEP interactions. This approach
produces a better rank for the best prediction than
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ZDOCK for 54 % of targets. However, the results differ
significantly across the three complex classes: There is an
improvement for 65 % of the enzyme/inhibitor complexes,
for 55 % of other complexes, but for only 32 % of the anti-
gen/antibody complexes. Furthermore, the average rank
with E86 is for antigen/antibody complexes considerably
higher than that obtained with ZDOCK. To improve these
results, we developed a training scheme for the OPEP-
based rescoring function based on false positive and
false negative predictions. The resulting trained rescoring
function callesd Etrained86 , which was applied to the tar-
gets from the test dataset taken from the Dockground
benchmark [24], produces a lower best rank compared
to the ZDOCK results for 54 % of the targets, while the
untrained OPEP-based scoring function can only improve
the rank of 48 % of targets. The trained scoring func-
tion performs particularly well for enzyme/inhibitor com-
plexes, where the best rank of 73 % of targets can be
improved. These figures are 47 % for other complexes, and
42 % for antigen/antibody complexes.

Performance analysis for different complex classes
Training the OPEP-based rescoring function revealed
that the complexes from different classes are sta-
bilized by different protein–protein interactions. For
enzyme/inhibitor and other complexes, interactions
between hydrophobic residues are of general importance,
and for enzyme/inhibitor complexes backbone–backbone
hydrogen bonds are also important. For antigen/antibody
complexes we found that training strengthens the
interactions between residues, which have been previ-
oulsy shown to be prevalent at the paratope of the anti-
body and the epitope of the antigen [42, 45]. The different
performance and training potentials reflect the different
protein–protein binding in enzyme/inhibitor and anti-
gen/antibody complexes. Antibodies can recognize a wide
spectrum of antigens, including proteins, polysaccharides,
nucleic acids, and even lipids, while enzyme–ligand bind-
ing has developed in an evolutionary sense to enable
specific binding of a ligand to its target enzyme. This
diverse binding by antibodies is accommodated by the
complementarity determining regions composed of six
loops that are modified in shape and chemical nature to
match the corresponding features of the antigen epitope.
Furthermore, the paratopes are mainly discontinuous, and
binding is usually mediated by only 4–13 residues. In
contrast, the enzyme inhibitors are typically small pro-
teins that form tight, substrate-like interactions with the
enzyme, which is reflected in a much stronger binding
energetics. The binding constants for enzyme/inhibitor
complexes are in the femtomolar range, which is about
six orders of magnitude smaller than the nanomolar
binding constants between antigen and antibody [42].
Thus, it is not surprising that the more static and strong

enzyme–inhibitor binding is more easily predicted than
the protein–protein interface in antigen/antibody com-
plexes, where already one missing or one wrong inter-
residue contact in a decoy can have a profound impact on
the performance of the scoring result. Our results suggest
that the collective complex class called ‘other complexes’
lies between the two ends of the spectrum bounded by
enzyme/inhibitor and antigen/antibody complexes.

Comparison to other rescoring approaches
In summary, this study demonstrates for the first time that
energy functions derived from the coarse-grained OPEP
force field can be employed to rescore predictions for
protein–protein complexes. This expands the applicabil-
ity of OPEP to new problems. While the performance
of OPEP is already very good for enzyme/inhibitor com-
plexes and better than ZDOCK, for the other complexes
and especially for antigen/antibody complexes, ZDOCK
is still better suited. The comparison to RDOCK results
[13] shows that rescoring with an all-atom force field
works somewhat better than rescoring with E86 and
Etrained86 . In RDOCK, the ZDOCK predictions are sub-
jected to a three-stage energy minimization scheme using
the CHARMM force field [48] and amounting to 130 min-
imization steps, followed by the rescoring based on the
CHARMM electrostatic and desolvation energies. This
elaborate approach improves the success rate for Npred =
10 (i.e., the success rate for finding a near-native hit within
the first 10 predictions, as expected in the CAPRI exper-
iment [41]) from 38 to 45 % for decoys obtained from
ZDOCK(PDE), which is similar to the ZDOCK 3.02 ver-
sion used in this work. In our study, the success rate
for Npred = 10 decreases by 1–2 % after rescoring with
E86 and Etrained86 (see Figs. 3 and 7). In case of E86 it is
due to the poor performance of this scoring function
for antigen/antibody complexes, while Etrained86 does not
perform well for Npred < 12 for other complexes. It
should be noted that also RDOCK is considerably less
successful for antigen/antibody complexes compared to
enzyme/inhibitor complexes, supporting our conclusion
that the rescoring of the former is more challenging than
that of the latter.
Comparison to other coarse-grained force fields shows

that OPEP is better suited as scoring function for protein-
protein docking than these. In addition to OPEP we
also tested the coarse-grained force field developed by
Bereau and Deserno (BD) [49] on a decoy set produced
by ZDOCK consisting of 23 enzyme/inhibitor and 23
other complexes. The BD force field increased the rank
of 31 complexes and decreased it for only four com-
plexes, which is considerably worse than what we obtain
with OPEP. Reasons for the failure of the BD force field
when applied to protein-protein docking are that the side-
chain beads have all the same size and that electrostatic
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interactions between charged residues are not modelled,
features that are present in OPEP. Moreover, in a study
performed similarly to ours, the UNRES coarse-grained
force field was tested as rescoring function [50]. The num-
ber of hits that were retained in the top-10 predictions
generated by FTDock [51] decreased by more than 50 %,
while with our approach the success rate decreases by only
1–2 % at Npred = 10. This shows that while OPEP is still
not a perfect scoring function for protein-protein docking,
it is clearly better suited than other coarse-grained force
fields.

Outlook
In our future work we strive to further improve the per-
formance of the OPEP rescoring functions. Here, special
attention will be devoted to antigen/antibody complexes,
where improvement is most needed. In addition, we will
not only rescore the decoys generated by ZDOCK but
also refine them by performing Monte Carlo simula-
tions with OPEP. One advantage of OPEP is that it is a
physics-motivated force field defined based on continu-
ous functions and is therefore ideally suited for flexible
docking. Our aim is to produce a reliable refinement and
rescoring protocol based on OPEP that only needs dock-
ing decoys generated by ZDOCK or another global search
algorithm as additional input. For the participation in the
CAPRI experiment, however, a final transformation from
the coarse-grained to the atomistic level for the top-10
decoys will become necessary as only atomistic decoys can
be submitted.
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