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Abstract

cells.

Background: Brownian Dynamics (BD) is a coarse-grained implicit-solvent simulation method that is routinely used
to investigate binary protein association dynamics, but due to its efficiency in handling large simulation volumes
and particle numbers it is well suited to also describe many-protein scenarios as they often occur in biological

Results: Here we introduce our "brownmove” simulation package which was designed to handle many-particle
problems with varying particle numbers and allows for a very flexible definition of rigid and flexible protein and
polymer models. Both a Brownian and a Langevin dynamics (LD) propagation scheme can be used and
hydrodynamic interactions are treated efficiently with our recently introduced TEA-HI ansatz [Geyer, Winter, JCP 130
(2009) 114905]. With simulations of constrained polymers and flexible models of spherical proteins we demonstrate
that it is crucial to include hydrodynamics when multi-bead models are used in BD or LD simulations. Only then
both the translational and the rotational diffusion coefficients and the timescales of the internal dynamics can be
reproduced correctly. In the third example project we show how constant density boundary conditions [Geyer et
al, JCP 120 (2004) 4573] can be used to set up a non-equilibrium simulation of diffusional transport across an array
of fixed obstacles. Finally, we demonstrate how the agglomeration dynamics of multiple particles with attractive
patches can be analysed conveniently with the help of a dynamic interaction network.

Conclusions: Combining BD and LD propagation, fast hydrodynamics, a flexible protein model, and interfaces for
“open” simulation settings, our freely available “brownmove” simulation package constitutes a new platform for
coarse-grained many-particle simulations of biologically relevant diffusion and transport processes.

Background

Before any reaction can occur in a biological cell
between, for example, an enzyme and its substrate, or
before two or more proteins can form a functional com-
plex, the respective partners have to find each other in
the crowded interior of the cell. For a full understanding
of these association and dissociation processes, be it for
a general picture or aimed at designing a drug that
enhances or suppresses a certain reaction specifically, a
lot of details need to be put together into a consistent
picture, rate constants need to be determined, and
effects of mutations need to be understood. Many of the
details can be determined experimentally. Some of these
information are microscopic detailed spatial pictures like
crystal structures while others come from macroscopi-
cally measured data about turnovers or global reaction
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kinetics. All these parts of the puzzle can be assembled
and studied conveniently by combining them into a
computer model and performing simulations. In these
in silico experiments all parameters of the system can
then be varied to investigate their effect on the associa-
tion rates and pathways. However, to deal with the large
volumes and particle numbers required to describe a
biological environment and the often slowly proceeding
kinetics, the simulation model has to be both detailed
and efficient enough. One often used workhorse techni-
que is Brownian Dynamics, which is named after the
botanist Robert Brown, who first described the micro-
scopic random motion of pollen grains in water in a let-
ter to his friends. Nearly eighty years later Einstein
could explain his observations [1]. Brown could not see
the individual water molecules in his microscope, to
him it was a continuous solvent in which the visible pol-
len grains were floating. Einstein realised that it was the
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thermal motion of the water molecules which made the
pollen grains move. He found that one does not have to
know their individual trajectories, but that a heat bath
and a Stokesian friction term are enough to describe
how they push the large pollen particles around. Ein-
stein’s idea was then later cast into the Brownian
Dynamics simulation technique [2]. With its continuous
solvent only the trajectories of the larger particles of
interest are evaluated, which allows for large simulation
volumes with many particles and long simulation times.
This method has been applied successfully to study, for
example, bimolecular association reactions [3-6], the
dynamics of colloidal suspensions and polymers [7,8],
or, recently, the dynamics inside the crowded cytoplasm
of a cell [9]. Einstein’s ansatz to replace the solvent
molecules by an effective heat bath and a friction term
explains the diffusive behaviour of a single large “Brow-
nian” particle, but it neglects all other effects of the sol-
vent on the interactions between multiple particles.
Electrostatic interactions, e.g., are shielded by the ions
contained in a physiological solvent. These ions have a
size which is comparable to the water molecules and
thus they are normally not modelled explicitly. Their
effect on the interaction between charges is usually
included via Debye-Hiickel continuum electrostatics.
Other solvent mediated effects are the short ranged
hydrophobic and hydrophilic interactions between pro-
teins and the so-called hydrodynamic interactions which
stem from the displacement of the solvent by the mov-
ing proteins, giving rise to many-particle velocity
correlations.

A Brownian dynamics simulation package therefore
has to deal with many different kinds of interactions,
some of which are direct physical interactions while
others are a consequence of the continuum solvent
ansatz. For some applications like the association of two
proteins, details of their spatial forms and their charge
distributions are important, whereas for other applica-
tions a model of simple spheres may already capture
the important features. A general purpose BD package
therefore has to be very flexible and should be easily
extensible.

When we started with Brownian Dynamics simula-
tions a few years ago [10,11] there was no such general
purpose software for many-particle simulations available.
Existing tools like UHBD, sda [12,13] or, more recently,
BrownDye [14] were aimed at efficiently calculating
association rates for binary encounters or, as the
HYDRO suite, the diffusional properties of individual
molecules [15]. We therefore developed our own pack-
age called “brownmove”. The main design ideas were a
modular particle model which allows to build up arbi-
trarily shaped particles from simple interaction shapes,
and the ability to handle many-particle scenarios with
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varying numbers of different particles. This includes an
interface to implicitly modelled bulk regions and also
reactions where a particle of one type can be exchanged
by a particle of a different type which, e.g., allows to
describe charge transfer reactions [16]. Due to the mod-
ular particle model one can use different spatial resolu-
tions for different particle types and it is very easy
to add new types of interactions. The latest additions
to the brownmove code are a Langevin propagation
scheme [17] and an efficient two-body-approximation
for the multi-particle hydrodynamic interactions [18].
Due to the modular design of the brownmove code
these additions could be included straightforwardly.
Even a mixed propagation scheme is possible, where
within the same simulation the standard overdamped
Brownian propagation scheme is used for one particle
type while for an other type the finitely damped Lange-
vin scheme is used. In brownmove a general particle is
described by a so called “protein” object, which contains
one or more “gestalt” objects which move indepen-
dently. An example of multiple gestalt objects within the
top level protein object could be a bead-spring-polymer,
which consists of the actual beads and the springs
between them. Each of the gestalt objects in turn con-
tains one or more “shape” objects, which encode the
various types of interactions. A shape for, e.g., electro-
static interactions then holds a number of point charges
which can be placed at arbitrary positions within the
frame of the gestalt object. This hierarchical setup as
sketched in Figure 1 is implemented in C++. Each shape
and the Gestalt and protein objects are classes. With
this modular design, arbitrary rigid and flexible proteins
can be defined and inserted into or taken out of the
simulation at runtime.

While most of the interactions implemented in
“brownmove” follow the usual tried strategies and
approximations used in Brownian dynamics simulations
of biological systems, there is only limited experience
with hydrodynamic interactions (HI) in this context.
The basic principles can be found in textbooks since
decades, but due to the until now rather expensive
numerical evaluation, simulations with HI have essen-
tially only been performed as dedicated tests of the ana-
lytical theories while in biologically inspired projects one
rather tried to get away without them.

The basic ideas of hydrodynamic interactions are sim-
ple. When a particle is moved through the solvent it
drags a part of the solvent with it and thus creates a
flow field that moves in the same direction as the parti-
cle. The second ingredient is Faxen’s theorem which
states that it takes the same force to move a particle
through a solvent at rest as to keep the particle at rest
in a solvent flowing around the particle with the oppo-
site velocity. For a sphere moving with a constant
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Figure 1 Hierarchic construction of a general particle in brownmove. The top level “Protein” object contains one or more “Gestalt” objects
which move independently and contain a shape for each interaction, which in turn contains the basic interaction entities. These are point
charges for electrostatic interactions or van-der-Waals spheres for effective short range interactions. With these the forces acting on the Gestalt
are calculated. The “GeomShape” object is always present and handles the conversion of the forces into a respective displacement.

velocity through a continuous solvent the flow field was
calculated already by Stokes (hence the term “Stokes”
friction) and can be found in most textbooks that treat
fluid mechanics. A corresponding expression exists for
the flow field generated by the rotation of a sphere. For
translation the fluid moves in the same direction as the
particle with a velocity that—to first order—decays pro-
portional to the inverse distance. Consequently, HI are a
long-range phenomenon, coupling all particles in the
simulation. For accelerating particles there is, however,
no closed form for the resulting flow field, because the
information about any changes of the particle velocity
cannot travel faster than the speed of sound, which
leads to retardation effects.

In simulations with an explicit solvent the solvent
molecules take care that the displacements are propa-
gated between the particles, but in any implicit solvent
method this hydrodynamic coupling has to be added
back explicitly. As flow fields are associated with motion
one sees that hydrodynamic interactions are not conser-
vative forces derived from a potential energy but that
they describe how the velocities of the particles influ-
ence each other. The evaluation of the actual velocity
coupling is then an iterative procedure. It starts from
the unperturbed, zeroth order velocities of the particles
that they would have if there were no HI. From theses
the resulting flow fields of the particles are evaluated
and then, at the locations of the other particles, con-
verted via Faxen’s theorem into an effective force acting
on them, which modifies their initial velocities. This
process is iterated until convergence, which is slow due
to the 1/r-dependence. In addition, the higher order cor-
rections couple three, four, and more particles. For

practical applications this series has to be truncated. For
spheres this can be calculated analytically and results in
a so-called diffusion matrix which converts the external
forces acting on each of the particles into the resulting
hydrodynamically correlated velocities (the mathematical
details can be found, e.g., in ref. [19]). When only the
first iteration is considered, this matrix is called the
Oseen tensor [20]. It describes the long-range interac-
tions, where “long-range” means that the particle dia-
meters are much smaller than the separation. This is
often expressed as that the Oseen tensor describes HI
between point particles. Consequently, as points cannot
rotate, there is no rotational coupling on the Oseen
level. When additionally the back-coupling from the sec-
ond particle back to the first is included but no three-
particle terms, it is called the Rotne-Prager-Yamakawa
(RPY) tensor [21,22]. This approximation is more accu-
rate than the Oseen tensor but it still underestimates
the coupling as the particles come closer. The main rea-
sons why HI is often treated on the RPY level is that it
gives reasonably accurate results for most practical
applications and that for setting up this hydrodynamic
tensor only pairs of particles need to be considered,
which results in a runtime that scales quadratically with
the number of particles. For any further orders three or
more particles have to be considered. Also, rotational
coupling can be included on the RPY level [23]. Higher
order corrections up to 1/7” can be found for example
in reference [24]. Forms of the RPY tensor for spheres
of different sizes can be found in [25,26].

When two spherical particles come very close the
above explained iteration needs to consider impractically
many terms. A more efficient approach is then to expand
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the hydrodynamic coupling between two particles in
powers of their separation, leading to the so-called lubri-
cation corrections (see, e.g., [27] for an application to a
three-body problem).

From the above explanations one sees that HI add back
the mechanical coupling between the particles that was
lost in the implicit solvent approximation, albeit on a
coarse and approximative level. Also, many proteins are
not truly spherical and the correct hydrodynamics is
different from the interaction of perfect spheres. The
diffusional properties of non-spherical particles can be
determined from a multi-bead-model [28,29], but there is
no explicit form of the diffusion matrix for the interac-
tion between such non-spherical objects. Here, one has
to resort to a number of spheres per particle. Conse-
quently, there has been a lot of (off the record) debate
about whether the computationally expensive HI is worth
the effort in BD simulations of biological scenarios where
already the protein models and the interactions are mod-
elled by crude approximations only. Due to the high
numerical costs of the conventional algorithms this ques-
tions—whether and how much HI affect the dynamics in
many-protein simulations—has not been addressed on a
broad range. Also it is not clear yet, how much higher
order corrections affect the results. With our recently
presented fast TEA-HI algorithm [18], which approxi-
mates the expensive matrix factorization in the evaluation
of the HI but uses the same hydrodynamic matrix, it is
now possible to compare simulations with and without
HI for many different scenarios. However, we were not
the first ones who tried to speed up the evaluation of
many-particle HI. Most prominent is Fixman’s Chebyshev
approximation to the expensive matrix factorization [30].
Other approaches are the Accelerated Stokesian dynamics
by Banchio and Brady [31] or the mean-field-hydrody-
namics of Heyes [8]. As should be clear from the above
descriptions, HI on this RPY level with its multiple
approximations will not be really accurate. However, a
comparison between simulations with and without HI
can show whether HI makes a difference. If the mere
inclusion of RPY-HI proves critical for a certain process
and one is interested in accurate quantitative results then
a more elaborate method has to be used.

There is a number of methods that range in accuracy
and effort between a fully atomistic model, which incor-
porates all details, and the simplified implicit solvent
BD. One approach is to numerically solve the Navier-
Stokes equation [32,33]. Other Methods like Dissipative
particle dynamics [34,35], Multi-Particle Collision
Dynamics [36,37], or the so-called Lowe-Anderson ther-
mostat [38] use virtual particles to represent momentum
“units” of the solvent. Yet another approach is the grid-
based Lattice-Boltzmann method where a linearized
Boltzmann equation is solved [39].
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Another implication which has to be considered when
using the simple and efficient RPY hydrodynamics in
Brownian dynamics simulations are the short timescales
that are required to describe the fast protein dynamics.
Then, as already mentioned above, the flow fields are
not the stationary Stokes solutions in an incompressible
fluid anymore. On these short time and length scales
an explicitly time-dependent method should be used
(see for example the discussion in [40]). However, at the
current stage it seems more important to map out for
which types of scenarios HI does make a difference and
for which it can be neglected.

This publication, which we also use to present our
“brownmove” simulation package, is organised as fol-
lows. After the above introduction, the following Results
and Discussions section starts with two examples on
how important hydrodynamic interactions are in coarse-
grained simulations of flexible proteins. The first exam-
ple investigates how the stiffness of a bead-spring poly-
mer affects its diffusional properties, while in the second
example a flexible model of a compact protein is built
from a number of small beads. Both cases show that
hydrodynamic interactions have to be included when
both rotational and translational diffusion shall be mod-
elled correctly. In the third example non-equilibrium
diffusional transport of simplified proteins through an
array of fixed obstacles is simulated. The last example
then demonstrates that many-particle simulations can
be conveniently analysed and understood quantitatively
with the help of a dynamic interaction network. The
technical details of the implementation, i.e., of the pro-
pagation algorithms, the efficient hydrodynamics,
the various interactions, and the available boundary
conditions are given in the Methods section after the
Conclusions.

Results and Discussion

In this section we present some example scenarios to
illustrate the kind of applications for which brownmove
was developed. From the vast number of possible set-
tings we chose two examples that highlight the impor-
tance of hydrodynamic interactions in coarse-grained
simulations of flexible protein models and two many-
particle scenarios. One describes non-equilibrium trans-
port and the other deals with the analysis of many-parti-
cle agglomeration.

So far, two projects have been published in which the
brownmove simulation package was used. These were
many-particle simulations of the association of cyto-
chrome ¢ at a charged membrane [11] and a coarse-
grained model of a small peptide [17]. Some other pro-
jects dealing with many-particle agglomeration and
transport are currently performed. In the first project
[11], the cytochrome ¢ were set up with the dipolar
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sphere model which consists of a van-der-Waals sphere
of 1.66 nm radius and three charges, a central charge of
+7.5 e for the total charge of the horse-heart cyto-
chrome ¢ and two small charges of + 1.75 e placed on
opposite sides of the spherical protein to mimic the
dipole [41]. The 30 x 30 nm” patch of membrane was
modelled with a planar van-der-Waals surface, the
charges of the lipids were implemented via a Guy-Chap-
man electrostatic potential plus, for some tests, nine to
25 point charges. The rectangular simulation box was
only 20 nm high, so that at the highest concentrations
some 300 cytochrome ¢ were enough to fill up the
simulation volume. The large bulk of the in-vitro experi-
ments was described via our constant density interfacing
algorithm, which simulates particle exchange with an
infinitely large reservoir of a given density [16]. With
the particle insertion interface providing a constant bulk
density we determined binding isotherms which showed
that even a few localised point charges on an otherwise
continuously charged membrane greatly enhance the
adsorption.

In the other project [17] we built a coarse-grained
model of a small peptide in which each residue was set
up from one to three van-der-Waals spheres and some
point charges. The first van-der-Waals sphere was
placed around the Co atom. For most of the residues a
second van-der-Waals sphere was enough to “cover up”
the remaining part of the sidechain. Only for the largest
residues, a third sphere was needed. The point charges
were taken from the crystal structure and placed at the
positions of the respective atoms (which generally did
not coincide with the centers of the van-der-Waals
spheres). Then these rigid residues were connected to
their neighbours by springs between the Ca atom posi-
tions and, as required, by additional springs between
residues spaced further apart. The spring constants were
optimised manually against an all-atom molecular
dynamics simulation. With this hand-parameterized
model peptide we could show how to combine the
finitely damped Langevin dynamics and the conven-
tional Rotne-Prager hydrodynamics to yield a fast and
stable propagation scheme for these small scales where
BD is not applicable anymore [17]. Currently, we are
working on a parameterization that allows to convert
arbitrary protein structures into flexible coarse-grained
models for such LD simulations.

Example 1: HI in constrained bead-spring polymers

The first example presented here is a continuation of
the bead-spring-polymer simulations reported in [18],
which had been used to introduce and test the truncated
expansion approximation hydrodynamics (TEA-HI).
There, the polymers consisted of spherical beads with
an exclusion volume which were connected to their
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direct neighbours by harmonic springs. Apart from the
forbidden steric overlap between the beads there was no
constraint on how these polymers might fold. In this
example, we investigate the effect of polymer stiffness.
As sketched in Figure 2 there are two alternative ways
to introduce stiffness into the polymer chain. In the first
variant the angles between subsequent springs are con-
strained. In “brownmove” this is done by adding addi-
tional longer springs between the next neighbours as
shown in Figure 2A. This implementation was used in
the project presented here. As usual in such bead-spring
polymers, rotation of the spherical beads was ignored. A
sample definition file for such a polymer with N = 5
beads and HI can be found together with the simulation
setup file in the supplementary materials as additional
files 1 and 2.

A second way to implement a polymer with con-
strained internal dynamics in “brownmove” is shown in
Figure 2B. Now the beads may rotate and the springs,
which only connect direct neighbours, are attached off-
center. Together with the effective short-range repulsion
between the beads this restricts how far the next bead
may move to the side. Note that in this implementation
the motion of neighbouring (and potentially non-spheri-
cal) beads is essentially free up to the point where they
touch while in the first variant the bending angle is con-
fined harmonically. In this second implementation
also rotational hydrodynamics have to be considered.

A

Figure 2 Two ways to implement a bead-spring polymer with
confined dynamics. In the conventional variant shown in panel A
the beads are connected by springs which are hooked up at their
respective centers, and the bending angle between subsequent
springs is confined harmonically by either a direct angle term or, as
shown here, by additional springs between the next neighbours.
“Brownmove” also allows to set up “bead train” polymers of rotating
beads where the “front” of one bead is connected to the “back” of
the previous bead with a short spring and the steric repulsion
between the beads constricts the polymer dynamics. This is shown
in panel B. For the simulations reported here the conventional
setup A was used.
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A brownmove example for such a bead-train polymer is
given as additional file 3. However, for results which are
directly comparable to the usual setups we used variant
A here. Simulations with polymers of N = 3, 5, 10, and
15 beads, respectively, were run both with and without
Rotne-Prager hydrodynamics using our TEA-HI algo-
rithm. The radius and the translational diffusion coeffi-
cient Dye.q of the beads was set to 1, which required a
simulation timestep of At = 5 x 107*. The springs
between the direct neighbours had a spring constant of
kn = 1000 units and the stiffness of the angle confining
next neighbour springs of length 5 was varied from
kan = 0.1 to 1000. The springs between the direct neigh-
bours had a length of 2.5 such that neighbouring beads
did not overlap. Overlap between all other pairs
of beads was prevented by a short range repulsive
potential.

Figure 3 shows how the long-time center-of-mass dif-
fusion coefficient D¢y of the polymers scaled with their
bead number N. Without hydrodynamics, Dcy; scaled as
N independent of how flexible the polymer was. With
HI and very soft springs our polymer resembles the con-
ventional unconstrained model and, correspondingly, the
scaling of Doy was close to the theoretical prediction of
N8 for infinitely long polymers [7,42]. When the
stiffness of the polymer is increased the beads are
further away from each other on average and the effects
of hydrodynamics decrease and, correspondingly, Dcy
decreased faster with N when k,y was increased. This
effect is not very pronounced for the short polymers
investigated here. Therefore, only the lowest and highest

®
2
a
=
=
o
[m]
0.1 — LIS -
— S e ]
--e--noHlk, =01 C
- -2 - - noHl,k, =1000 S
——e—— with HI, k2N =0.1 7
— &— - with H|,k2N=1000 7
L L L L ‘
1 10
N

Figure 3 Normalised center-of-mass diffusion coefficient D¢y
of bead-spring polymers vs. the number of beads, N. Without
HI, Dcy scaled as N independent of the stiffness, i.e, the “folding”
state of the polymer. With Hl, a stiffer polymer with a higher ko
diffuses slower because then the beads are on average further away
from each other and the velocity correlation introduced by the HI is
weaker.
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values of kyy = 0.1 and 1000 used here are shown in
Figure 3. For even higher spring constants ky and kyy,
the polymers would start to resemble long rods for
which D¢y scales as In(N)/N [19]. Indeed, some devia-
tions from the power-law scaling can already be seen for
kon = 1000.

A different behaviour was found when the rotational
properties of the polymers were considered. As shown
in Figure 4, the correlation time t,,, of the orientation
of the end-to-end vector was nearly insensitive to
whether HI was included or not. However, now the stiff-
ness, which determines the average length of the poly-
mer, had a strong effect on rotation. Whereas for the
short polymer with N = 3 the length, and therefore 7.,
could not vary much, the orientational relaxation time
increased by about one order of magnitude for the long
N = 15 polymer when k,y was increased from 0.1
to 1000.

From these observations the following picture
emerges. Translational diffusion of our polymers was
only weakly affected when the more globular structure
of a flexible polymer was “unfolded” by increasing the
chain stiffness. However, it was crucial to include HI for
the correct scaling of D¢y with the chain length. This is
even more important when proteins are simulated
which can fold into a much more compact structure
than these bead-spring polymers with only repulsive
interactions between their beads. On the other hand,
the rotational motion was very sensitive to the “folding
state” of the polymer but essentially unaffected by HIL
Thus, if one wants to use a bead-spring polymer as a
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Figure 4 Correlation time 7, of the orientation of the end-
to-end vector vs. polymer stiffness. \When the spring constant of
the next neighbour springs, ko, Was increased the polymer became
more extended and, consequently, rotated slower. The filled
symbols are from simulations without HI while the open symbols
give the results with HI for polymers of the respective bead
number N.
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model for a protein which can change its conformation
from a folded globular to a denatured unfolded state,
then HI has to be included. Otherwise, only the transla-
tional or the rotational diffusional behaviour can be
modelled correctly, but not both.

In these bead-spring polymers the direct interactions
between the beads, i.e., the springs and the van-der-
Weaals interactions, were very simple and thus the rela-
tive costs of including the hydrodynamic coupling were
relatively high. On average, the simulations with HI
took about three times as long as the corresponding
simulations without HI. However, due to the O(N?) scal-
ing of our TEA-HI algorithm this ratio was roughly con-
stant for all polymer lengths and thus one can state that
when a simulation can be afforded without HI, then
normally the corresponding scenario with HI can now
be done, too.

Example 2: Elastic proteins from small beads

The previous example shows that it is crucial to include
HI when the diffusional properties of polymers or pro-
teins are simulated with bead-spring models. The fol-
lowing example confirms this finding. For this we built
proteins from small beads which interact via HI as pio-
neered by Garcia de la Torre (see, e.g., [15,28,43]). For
easier comparison we focussed here on (nearly) spheri-
cal shapes. The particles were assembled from beads
placed onto a hexagonal close packing grid as sketched
in Figure 5. Each bead had a radius of 2 nm and a cor-
responding single bead diffusion coefficient of Dyc.q =
1.2 x 10* nm? ps™'. The beads were connected to their
up to twelve direct neighbours by springs with a length
of 5 nm. Four different particles were assembled with
N =4, 13, 39, and 57 beads, respectively. Three of them

Figure 5 Sketch of three of the elastic protein models
assembled from hexagonally placed small beads. The beads are
held together by harmonic springs between direct neighbours
which are then propagated individually. In addition to the three
sizes shown here we used a fourth protein built from 39 beads. As
more and more beads are used the resulting particles get closer to
a spherical shape.

-
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are sketched in Figure 5. As an example the definition
file for the N = 13 particle with HI is given as additional
file 4.

From the simulations we extracted the center-of-mass
diffusion coefficient Dy,. As shown in Figure 6, D,, again
scaled as N'' when HI were neglected. This is the same
scaling as for the polymers which have a completely dif-
ferent shape. With HI included, D,, decreased as N **?
with the number of beads. This is slower than in the
polymer case because here the particles are much closer
together on average than in the flexible, chain shaped
polymers.

For comparison, the translational diffusion coefficient
of a sphere scales proportional to its inverse radius [19].
Assuming a constant density, we find that D, decreases
with the third root of the volume. We can thus estimate
that in our case where the volume is proportional to the
number of beads, N, D, should decrease as N"°33, Our
results were slightly slower because both the Rotne-Pra-
ger tensor and our TEA-HI algorithm underestimate the
hydrodynamic coupling at close distances [18,24]. Also,
we did not investigate how the radius of the individual
beads affects the diffusion coefficients of the assembled
proteins (see, e.g., the discussion in [44]).

When a protein is modelled from individual beads one
can adjust the diffusion coefficient Dy..q of the indivi-
dual beads until a best match between an experimentally
determined diffusion coefficient and the D,, observed in
the simulation is achieved. Here we could not compare
to experimental values but we ran another set of
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Figure 6 Scaling of the translational center-of-mass diffusion
coefficient Dy, of spherical multi-bead particles with the
number of beads, N. Without HI the usual N’ scaling was
obtained whereas with HI the scaling was close to the N'/* scaling
for a single sphere when the volume is proportional to the number
of beads. The open squares denote results from simulations without
HI in which the single bead diffusion coefficient was rescaled for
each particle size (= bead number N) individually in order to
reproduce the scaling of Dy, with HI.
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simulations without HI where Dy.,q was adjusted such
that the center-of-mass diffusion reproduced the values
obtained with HI. The required single bead diffusion
coefficients were 2.4 x 10, 5 x 10, 9.7 x 107, and
1.2 x 10 nm? ps’1 for the particles with N = 4, 13, 39,
and 57 beads, respectively. Consequently, in Figure 6
the obtained Dy, values with the faster beads coincide
with the results with HL

The rotational diffusion coefficient D, = kpT/8mna®
of a sphere of radius a decreases linearly with the
volume. Together with the N'3 behaviour of D,, we
consequently find that the rotational relaxation time
Trot = 1/2D,o scales proportional to D, for a spherical
particle. Figure 7 shows that this prediction was indeed
fulfilled by our “spherical” particles assembled from
individual beads when HI were included. Without the
hydrodynamic velocity coupling between the beads, T,
only scaled as D;!® which means that the rotational
relaxation was too fast compared to the translational dif-
fusion. A large particle built from many small beads
thus either rotates too fast or translates too slow. Inter-
estingly, the correct D> scaling was regained when the
single bead diffusion coefficient Dy.,q was modified as
explained above such that for each particle size the cor-
rect D, was obtained. Then, however, rotation was
about five times too fast for all our test particles. This
again shows that it is essential to include HI in multi-
ple-bead models of, e.g. proteins in order to correctly
describe both the translational and the rotational diffu-
sion (see also [44]). On the other hand, with HI, the
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107 & =
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e L |
10° . =
——e—— with HI =
——e—— no HI 4
——+F— no Hl, faster beads i
O equiv. sphere
104 Lol
10°® 10° 10"

Dtr [nm” ps ]

Figure 7 Rotational relaxation time of the end-to-end vector,
t.ou VS. the center-of-mass diffusion coefficient D,, for multi-
bead particles of different sizes N. With HI the expected D;r3
scaling of a sphere of equivalent radius was reproduced, whereas
without HI rotation was too fast. When the single bead diffusion
coefficients were rescaled for the correct D,, at each N individually
(open squares), T, also scaled as D;r3 but was still too fast by a
factor of about five. For more explanations see text.
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correct rotational diffusion comes for free in multi-bead
models. As shown once more, multi-bead models can be
used to correctly describe both translational and rota-
tional diffusion for arbitrarily shaped proteins. This
could have also been achieved with much less numerical
effort with a rigid particle and a non-isotropic diffusion
matrix, which can be determined off-line from a bead
model [15].

However, as shown by Elcock et al. [44], a multi-bead
model “automatically” yields a much more reliable
description of the hydrodynamic interactions between
different particles. Additionally, the Rotne-Prager tensor
is a far-field approximation which works reasonably well
when two spherical beads are separated by more than a
radius inbetween them. With the smaller beads of a
multi-bead model HI thus becomes more accurate for
smaller separations between the particles.

Another reason to use multi-bead models is that they
allow to describe the internal flexibility of a protein,
where often conformational changes occur upon binding
or during the catalytic activity or, most prominently,
when a protein folds. In these scenarios it would be a
bad idea to rescale the single bead diffusion coefficients
because even though the overall diffusive behaviour
might be described better, the internal dynamics would
take place on the too fast timescale of the individual
beads. Our “spherical” particles do not undergo confor-
mational changes but it is nevertheless interesting to
investigate the dynamics of the individual beads. At very
short timescales the elastic springs do not affect the
small thermal fluctuations of the beads whereas for very
long observation intervals the beads are effectively fro-
zen to their positions in the particle. We thus expect
that Dy.,q extracted from a simulation decreases with
increasing observation interval from the single bead
value Dye,q(At) to the center-of-mass Dy,.

For this we determined the apparent single bead diffu-
sion coefficients Dpeaq (At) = <r*(At)>/6At of all indivi-
dual beads of the N = 11 particle from the averaged
squared displacements <*(At)> for different observation
time intervals Az. This analysis was performed on a
simulation where the mass of the beads was neglected, i.
e., with the BD propagation scheme, and on another
similar simulation using the finitely damped LD scheme
with a bead mass mpe,q = 20 kDa. The corresponding
velocity relaxation time is then ., = 0.99 ps which is
about the length of the shortest analysis timestep used
here. The filled symbols in Figure 8 show how with the
BD propagation the ensemble average <Dypeqaq>(Af)
decreased from the single bead value of 1.2 x 10* nm?>
ps”' for very short intervals to the long-time center-of-
mass value Dy,. The behaviour of the apparent <Dyeqaq>
(At) was similar both with and without HI, but the dif-
ference was larger without HI. This again illustrates that
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when Dy.q is rescaled to compensate for the omission
of HI in such a multi-bead model the internal dynamics
will be too fast in relation to the diffusional center-of-
mass displacement. One can expect that then also smal-
ler domains of a few connected beads move too fast in
comparison to larger domains. This may affect for
example the folding trajectories of proteins or the rela-
tive ordering in a sequence of conformational changes
of a protein as demonstrated in [45]. When the mass of
the beads was considered (open symbols in Figure 8)
the same long time values were obtained, whereas
<Dpeaq> dramatically decreased when. At was made
smaller. At At = 1 ps = T, the apparent <Dpeaq> =
2.3 x 10 nm® ps ™ was nearly one order of magnitude
smaller than the specified long time value of Dye.q =
1.2 x 10* nm? ps’’. It is interesting to note that this
slowing down of the short-time dynamics was essentially
unaffected by HI. Apparently, in a BD or LD simulation
the hydrodynamic velocity coupling requires some time
to build up before it affects the relative motion of the
individual beads.

Comparing the runtimes for the various protein sizes
we again find that the effort per timestep scales quadra-
tically with the number of beads, N, both when HI are
included and when not. With HI, the simulations took
about three times as long as without. From these
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Figure 8 Effective average diffusion coefficient <Dycaq> of the
individual beads in a multi-bead model vs. the length of the
observation interval At. With BD the dynamics of the mass-less
beads is determined on short time scales by the fast thermal
motion of the individual beads while over longer periods the beads
have to follow the center-of-mass motion of the complete particle
(filled symbols). Consequently, over long intervals At the effective
average bead diffusion coefficient <Dpeaq>(At) converges to Dy,.
Without HI the two underlying timescales are separated even
further. When the mass of the beads is considered and an LD
propagation is used then the apparent <Dpeaq> also decreases at
very short observation intervals independent of whether HI are used
or not.

1 10 100
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runtimes we can estimate that up to a million timesteps
of a many-particle simulation with a hundred simple
rigid particles or individual shapes can be computed in
about one hour on one core of a 2 GHz Core2 Duo
CPU. With a typical timestep of 10 ps for a many-pro-
tein scenario this amounts to a total simulated time of
10 ps per hour.

Here, however, a word of caution is required. From a
theoretical point of view it is not correct to use RPY
hydrodynamics which are based on stationary flow fields
together with the LD propagation algorithm with its
acceleration phases. Here an explicitly time dependent
ansatz for HI should be used [40]. Thus, using BD with
HI seems to be the better choice regarding theoretical
consistency—but using BD for fast processes is question-
able, too. To add to this uncertainty, it is also not clear
how one should interpret hydrodynamic interactions
inside a compact protein where there are usually only a
few scattered water molecules? Yet another view to this
problem would be to observe that for very short At HI
effectively become irrelevant for both BD and LD and
to conclude from that that for practical applications HI
should just be used. They are required for the long time
dynamics and do not hurt the details.

Probably, one should use a different interpretation for
inter- and for intra-molecular HI in simulations as
presented above. The inter-molecular HI describe the
solvent-mediated velocity coupling via the resulting flow
fields and is thus the “true” HI whereas the intra-mole-
cular HI recover a part of the internal viscosity of the
protein: when a multi-bead-model is used to coarse-
grain a protein then each bead is a rigid representation
of a part of the originally continuously elastic protein.
Instead of the continuous deformations of the original
protein, now these rigid blocks move relative to each
other and HI may be a way to recover at least a part of
the viscosity of the protein. Consequently, with all these
uncertainties in mind, we find that some more research
is required in this area of elastic coarse-grained protein
models and fast algorithms for time-dependent HI to
finally arrive at both a sufficiently accurate mathematical
formulation and the correct interpretation.

Example 3: Diffusional transport around fixed obstacles

The third example presented here relates to diffusional
transport in a cell where many fixed obstacles like the
cytosceleton or small vesicles obstruct the free diffusion
of the soluble proteins. Our (non-equilibrium) setup is
sketched in Figure 9. A rectangular simulation box of
length L, = 30 nm and area L,L, = (20 nm)* was placed
between two reservoirs with fixed densities p, of which
one was set to a finite value py = 4 x 10™* nm™ = 0.67
mM and the other to p = 0. After an equilibration
phase a constant diffusion current developed which
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Figure 9 Diffusional transport through an array of fixed
obstacles. The 2D periodic simulation box is bounded in the third
dimension by two reservoirs with fixed densities p = pp and p =0
between which a stationary diffusion current develops. This current
depends on the number and size of the fixed spherical obstacles
(grey) and on their interaction with the small mobile particles (red).
For more details see text.

depends on the density difference py and on the number
and size of the fixed obstacles in the simulation volume.
Here, we used one or two layers of nine obstacles in the
(2D periodic) y-z-plane. The diffusing “proteins” had a
radius of 2 = 2 nm and a diffusion coefficient of D, =
10* nm® ps™'. They were uncharged and their van-der-
Waals shapes prevented a mutual overlap. The obstacles
were placed on a 3 x 3 rectangular grid either at x = 0
when one layer was used or at » = + 10 nm with two
layers. With this setup the obstacle layer became
impermeable for the proteins when the obstacle radius
was larger than A, = 7.4 nm. More details can be found
in the actual setup and particle definition files given as
additional files 5, 6, and 7.

In our “brownmove” simulations the obstacles were
implemented as a “Wall” object with a “Gestalt” that
consisted of nine (18) van-der-Waals spheres at fixed
positions. As these fixed structures do not move anyway,
no mutual interactions between them are evaluated, so
that the number of pairwise forces Nj,, that has to be
determined at each timestep is given by

Ny (N, —1
N = 7 N =) + N,No, (1)

where N, is the number of mobile particles and N, is
the number of fixed obstacles. This means that for lar-

ger systems the runtime still scales with O (Né) instead

of O((N,, + N,)?) if the obstacles were implemented as
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mobile particles that are confined to their locations by,
e.g., harmonic constraints. One caveat though is that in
“brownmove” hydrodynamic interactions between mov-
ing proteins and fixed obstacles are not implemented
yet. Consequently, in this project no HI was used. With
non-interacting particles and no obstacles in the simula-
tion volume the resulting diffusion current jp = Dy pg
/L, would be jp = 6.7 x 10*° ps”* nm™, i.e., particles
would arrive at the p = 0 boundary with a rate of Rp =
LyL,jp = 1.1 x 10 ps*. With our finite sized particles
we obtained Rp = 1.2 x 10 ps' from a control simula-
tion without obstacles. All simulations were run for 10
million timesteps of At = 10 ps with initially no mobile
proteins in the simulation volume. Each simulation took
about half an hour on one core of a 2 GHz Core2 Duo
CPU. During each simulation we counted the number
of particles N (£) that left the simulation at the (left) p =
0 interface. Three simulation runs were performed for
each configuration and the averaged Ni(t) was fitted
with a straight line. Its slope gave the diffusion rate Rp
through the simulation volume with the respective array
of obstacles and the intersect with the x-axis corre-
sponds to the time Tp, that the particles needed to cover
the distance L, around the obstacles. The results are
given in table 1 which also lists the average number N,
of mobile particles in each of the simulations. The
investigated configurations were a single or a double
layer of obstacles with radii A, = 5 to 7.3 nm and either
purely repulsive short range interactions between all
particles or with an additional attractive term between
the obstacles and the diffusing proteins.

The results in table 1 show that with purely repulsive
interactions the number of particles in the simulation
volume, N, and the diffusion rate Rp decreased as
expected with each additional layer of obstacles and also
with the obstacle radius Ay. It also took the particles
slightly longer to travel through the simulation volume
when the second layer was added because now the

Table 1 Diffusive particle transport through an array of
fixed obstacles.

Setup Np  Rplus'] Tp [ps]

no obstacles (control) 20 12 8

single layer, repulsive, A, = 5 nm 17 0.69 8

double layer, repulsive, Ag = 5 nm 15 0.55 12
double layer, repulsive, Ag = 6 nm 11 0.16 10
single layer, attractive, A, = 5 nm 22 12 5

double layer, attractive, Ag = 5 nm 25 12 55
double layer, attractive, Ay = 6 nm 25 1.0 6
double layer, attractive, Ay = 7.3 nm 27 0.72 7

Number of particles in the simulation volume, N, rate of particles that
crossed the simulation volume, Rp, and the time Ty that the particles needed
to diffuse through the simulation box for the different setups that were
simulated.
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shorter direct path was blocked and the particles had to
diffuse around the obstacles. When the obstacle radius
was increased beyond Ay = 6.5 nm the diffusion current
was blocked within the scope of our simulation. Then
also Tp become very large and no particles reached the
p = 0 side within the given simulation duration of 100
ps. Intrestingly when a short range attractive interaction
was added between the proteins and the obstacles, diffu-
sion was much less hindered. Even two layers of obsta-
cles with Ay = 5 nm did not reduce the diffusion rate
Rp. Due to the attraction the proteins stayed closer to
the obstacles which reduced the effective “bulk” density.
Then, more particles were inserted and N, increased.
When the proteins are attracted to the obstacles they
temporarily slide along their surfaces and are thus effec-
tively funnelled through the gaps between the obstacles.
Consequently, it took them less time to pass the obsta-
cle “barrier” and T, decreased considerably. To shut off
the particle transport the now attractive obstacles had to
be made so large that the proteins did not fit through
the pores anymore. This occurred at A, > 7.4 nm. The
efficiency of the surface-induced funneling was so high
that even at Ay = 7.3 nm, where the pores between the
obstacles were only slightly larger than the proteins, the
diffusion rate was about as high as with a single layer of
much smaller repulsive obstacles.

In this simplified scenario both the mobile “proteins”
and the obstacles were perfect spheres without any sur-
face roughness and without hydrodynamic interactions
which would slow down the protein diffusion close to
the large obstacles [46]. In a more realistic setup one
would therefore expect that an unspecific attraction
makes diffusion between fixed obstacles faster while a
corrugate surface would introduce sticking and thus
break the surface induced funnelling observed here.
Then also HI should be included by implementing the
obstacles as mobile proteins that are fixed to their posi-
tions by harmonic external potentials. However, such a
detailed project with realistic shapes and interactions is
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beyond the scope of this publication but it can be
implemented straightforwardly in brownmove based on
the this example.

Example 4: Particle agglomeration networks
In the last example we present simulations of the
agglomeration of simple particles with a binding patch
and how such many-particle simulations can be analysed
conveniently with the help of a dynamic interaction net-
work. This idea was previously introduced in reference
[47]. For an introduction into networks in a biological
context see for example [48]. As sketched in Figure 10
A the particles were composed from two van-der-Waals
spheres of 1.7 nm radius which were displaced from the
particle center by + 0.5 nm in opposite directions. Each
half had a different van-der-Waals “colour”, as this
index is named in “brownmove”. Now for each pair of
colours a set of interaction parameters was defined such
that the red spheres of Figure 10 interact with a repul-
sive hard core plus a short ranged attractive term and
the other combinations — red against grey and grey vs.
grey — had a repulsive interaction only. The well depth
of the attractive potential between the red spheres was
slightly below the thermal energy so that in the simula-
tions complexes formed only transiently. Each particle
had the translational and rotational diffusion coefficients
of an equivalent sphere of 2 nm radius, i.e., D = 1.2 x
10* nm? ps™ and D, = 2.26 x 10 ps’. With the mass
of a protein of that size of m = 18 kDa we get a velocity
relaxation time m/y = 0.9 ps. Even though a relatively
large timestep of At = 10 ps was used in the simulations,
we ran them with the LD propagation scheme because its
overhead is negligible and the propagation is more stable
than the standard BD scheme [17]. This is especially useful
in such many particle agglomeration scenarios where large
forces may occur locally. In such cases the finitely damped
LD scheme has an additional safety margin.

The simulation was performed with 27 particles in a
cubic simulation box of 30 nm length with 3D periodic

3.4 nm

Figure 10 Simulation of particle agglomeration and analysis via a dynamic network. Sketch of the particles composed of two mutually
displaced van-der-Waals spheres (A). As indicated in B, the particles can bind to each other with their red sides. The spatial snapshots are
mapped onto an interaction network by using a distance criterion. The resulting dynamic network is then used to analyse the simulation (C).
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boundary conditions for 20 ps. Every 10 ns the positions
and orientations of the particles were saved to disk. The
particle definition and the brownmove simulation setup
are given as additional files 8 and 9. After the simula-
tion, which took about 35 minutes on one core of a 2
GHz Core2 Duo CPU, the positions of the red vdW
spheres were extracted from the trajectory dump and
for each timestep an interaction network was con-
structed with a distance criterion as indicated in Figure
10B and 10C. For this, each red vdW sphere corre-
sponds to a node of the network and a link was added
between all nodes that had a center-to-center distance
of less than 4 nm. A spatial configuration as shown in
Figure 10B where some of the distance checks are indi-
cated by the green circles would then result in a net-
work as shown in panel C. For illustration purpose the
nodes of the network are placed at similar positions as
the corresponding vdW spheres, but for our actual net-
work analysis the spatial coordinates were not used any-
more once the network was set up. From the dynamic
network then typical network measures like the total
number of links or the size distribution of the clusters
were extracted at each output step.

To demonstrate the convenience of such a network
analysis we first present in Figure 11 two snapshots
from the simulation (no further snapshots nor a movie
will be given). They show the particles with their peri-
odic images in the x-y plane. For clarity, the periodicity
in z-direction is omitted. The left panel shows the simu-
lation at 7' = 2.85 ps when a large cluster of 21 particles
and a dimer had formed. The remaining four particles
were unbound and are shown in the image in lighter
colour. Later, at T = 15.44 ps as shown in the right
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image, more than half of the particles were not bound
to any other and the largest cluster had a size of three.
To explain the association and dissociation events dur-
ing the complete simulation, one would normally gener-
ate a movie and observe how quantities like the total
binding energy or the radial correlation function evolve
over time.

Using the dynamic network it is now actually quite
easy to visualise the clustering dynamics quantitatively.
Figure 12A shows which cluster sizes occurred during
the simulation. A dot denotes that at least one cluster of
the given size was found in the simulation at that time.
One sees that in the beginning small clusters of up to 6
particles formed quickly and that after the first microse-
cond one cluster grew until its size peaked at 21 parti-
cles in the snapshot shown above (indicated by the
black arrow). The broken line indicates the half of the
27 particles. Thus, when a cluster with at least 14 parti-
cles occurs we can be sure that there is only one large
cluster whereas for cluster sizes of one or two there
were usually a few clusters at the same time in the
simulation. The broad distribution of the cluster sizes
shows that the clusters were highly dynamic with many
fast binding and unbinding events which took place on
timescales faster than the size of the dots in Figure 12.
After the largest cluster had its maximum size around T
= 2.85 s, it started to slowly shrink again. Around 7 =
6 ps we can see a broad band of cluster sizes of up to
14 which indicates that the largest cluster was falling
apart temporarily into two or more smaller parts and
then re-stabilised again after 7'~ 7 ps. The second snap-
shot shown above is from the region of T' = 15...17 us
when there was no large cluster. Interestingly, after this
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Figure 11 Two snapshots of a simulation of particle agglomeration. At T = 2.85 s most of the particles were found together in one large

cluster, while later at T =
12 A with black arrows.

1544 us the largest cluster consisted of three particles. The time points of these two snapshots are indicated in figure

T=15.44 us
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Figure 12 Network analysis of a particle agglomeration simulation. Panel A shows which cluster sizes occurred during the simulation. The
two arrows denote the time points of the two snapshots shown in figure 11. The other two panels give the average and the maximal degree, <k>
and max(k), respectively, (B), and the number of clusters of size larger than one, #CC(N>1), and the average size of these cluster, <N>(N>1) (C).
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“reorganisation” phase, another large cluster formed
quickly which contained nearly all particles around 7" =
17.5 ps.

Panel B of Figure 12 gives the average degree <k>, i.e.,
the average number of links per node, and the maximal
degree during the same simulation run, max(k). To a
first approximation each link contributes the same
amount to the total binding energy of the system. This
panel therefore can be compared to a plot of the total
energy of the simulation in a conventional spatial analy-
sis. We see that except for the beginning of the simula-
tion and during the “reorganisation phase” 7' = 15...17
ps both the averaged <k> and the maximal degree only
fluctuated around their typical values and especially the
formation of the large clusters cannot be identified from
this plot. This can be understood because with the
many independent fast binding and unbinding events
between the particles each particle will on average have
a similar number of binding partners and the maximal
degree is limited by the size of the neighbouring

particles. Thus only a certain number of particles can
come close enough to a given particle to be counted as
bound. However, from the comparison of panels A and
B we find that the large clusters identified in the cluster
size distribution were not very compact. Otherwise, <k>
and max(k) would peak at the same time points as the
cluster size.

A third view onto the simulation is presented in panel
C which gives the number of clusters (connected com-
ponents) of sizes larger than a single particle, #CC(N>1),
and the average size of the clusters of at least two parti-
cles, <N>(N>1). These two graph measures again indi-
cate that the simulation was highly dynamic. The
number of clusters of at least two connected particles
fluctuated between one and about five, indicating that
quite often during the simulation there was only one
large cluster plus a number of unconnected particles.
These events coincide with a large average cluster size.
In fact, when there is only one large cluster then the
average size is the same as its size.
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In general we find that the more local measures such
as the degree of a node give less information about the
overall state of the simulation than the more global
ones like the cluster size distribution. Other helpful
measures which were not presented here include the
clustering coefficient which quantifies how well or how
regular the neighbourhood of a given particle is con-
nected, or the distribution of shortest paths which gives
a measure about how densely packed the clusters are.

Conclusions

In this publication we gave four simple examples for
simulation projects that can be performed “out of the
box” with our brownmove simulation package. The
main features presented here are the fast hydrodynamics
algorithm, the easy and flexible setup of mobile proteins
and of fixed structures in the simulation volume, and
how a dynamic network can be used to conveniently
analyse a many particle simulation quantitatively and to
visualise the fast changes of the time dependent spatial
properties.

In the first example we investigated how the stiffness
of a bead-spring polymer which was controlled by addi-
tional springs between next neighbours, affects the
translational and rotational diffusion coefficients. This
model system can be compared to a denatured protein
in unfolded states ranging from a molten globule like
structure of the completely flexible polymer up to a
rather rod-like structure when the 1-3-springs are made
stiffer. In experiments one finds that a more stretched
configuration generally diffuses slower. When hydrody-
namic interactions (HI) are omitted—as was often done
in BD simulations of protein—the long-time translational
diffusion coefficient was completely insensitive to the
“folding state” of the polymer. Only when HI were
included we observed that the more stretched stiffer
polymers diffused slower than the more compact flexible
versions. Interestingly, the rotational diffusion, charac-
terised by the relaxation time 1, of the end-to-end vec-
tor, was only very weakly affected by HI. While the
(constrained) bead-spring polymer can be interpreted as
an unfolded protein, the flexible particles of our second
example represent folded proteins. They were built from
different numbers of small beads placed on a hexagonal
close packing lattice and connected by springs to their
direct neighbours. Again we examined translational and
rotational diffusion and compared our results to the pre-
dictions for a sphere with an equivalent radius. In the
simulations with HI the predicted scaling both of the
center-of-mass diffusion coefficient D, and of the orien-
tational relaxation time 7, with the number of beads
was observed, whereas without HI we could only repro-
duce either Dy, or t,,, by rescaling the diffusion coeftfi-
cients of the individual beads, but not both at the same
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time. Generally, without HI either rotation was too fast
or translation too slow. From these two examples one
finds that HI must be included in simulations of flexible
protein models when translation, rotation, and internal
dynamics are investigated. With HI, the translational dif-
fusion coefficient of the individual beads is then the only
parameter that needs to be adjusted. The rotational
properties and also the relative timing of internal
motions then come “for free”. This was already briefly
discussed recently by Frembgen-Kesner and Elcock [44].
Whereas there still the usual numerically expensive
Cholesky factorisation was used to evaluate the hydrody-
namic correlations, we used the recently introduced
truncated expansion approximation with its much faster
O(N?) scaling. For these two examples with their very
simple beads the inclusion of HI only slowed down the
simulations by a factor of about three. When the indivi-
dual sub units are more complex, i.e., when additionally
point charges are included or more than a single van-
der-Waals sphere are used to model non-spherical
blocks, then the relative costs of HI can even decrease
to less than ten percent of the total simulation time.
This had been the case for our recently published simu-
lation of a small peptide [17].

The third example demonstrates how constant density
boundary conditions [16] can be used to model non-
equilibrium transport scenarios with the brownmove
package. Here, a diffusion current of the small mobile
particles across an array of fixed spherical obstacles
developed. This can be seen as a greatly simplified
model of diffusive transport in a cell where various fixed
structures like vesicles or the cytosceleton obstruct free
diffusion. As expected, the resulting diffusion current
decreased with increasing size and number of the obsta-
cles. Interestingly, when an additional attractive interac-
tion was added between the mobile particles and the
obstacles, the diffusional transport was much less
affected, because now the mobile “proteins” were guided
along the surfaces of the obstacles through the narrow
holes between them. One can speculate that a certain
“stickiness” between the proteins and the structural ele-
ments of a cell might actually help with the efficient
transport and thus at least partly compensate for block-
ing the direct path. In our example the mobile “pro-
teins” and the obstacles were extremely simplified.
However, it is straightforward to build much more rea-
listic models of both the proteins and the cellular struc-
tures in brownmove by using multiple van-der-Waals
spheres per bead or by adding any number of point
charges to both the proteins and the obstacles. A more
realistic fibrillar structure of the obstacles could for
example be implemented by many small spheres along
straight or curves lines within the simulation volume.
Also crowding could be included by adding a fixed
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number of mobile particles of another species which
then are not exchanged at the reservoirs.

In the last example we simulated a scenario where
particles with a “sticky” patch formed temporary
agglomerates. Usually such simulations with their fast
and frequent association and dissociation events are
tedious to analyse. Following a recent project [47], we
mapped the spatial positions onto a dynamic interaction
network where each particle is represented by a node
and a link is added when the attractive patches of two
particles are closer to each other than a specified mini-
mal distance. From this dynamic network we then
extracted the distribution of cluster sizes, the average
and maximum number of links per node, and the num-
ber and average size of the clusters of at least two parti-
cles. Together with images from only two snapshots
these time dependent network measures allowed to
obtain a quantitative picture of the dynamics during the
simulation.

The examples presented here are rather templates
than actual projects. However, they not only emphasise
the importance of HI but they also demonstrate that
our freely available “brownmove” simulation package is
very flexible and allows to easily investigate a number of
scenarios for which a specialised software had to be
written before. This especially applies to many-particle
simulations with different kinds of particles in “open”
systems where, e.g., non-equilibrium transport or reac-
tions, or the association of particles from a large bulk
phase onto a surface are considered.

Methods

Particle setup and interactions

As mentioned above, the particles in a “brownmove”
simulation are set up hierarchically from various
“objects” (see Figure 1). The “brownmove” package is
written in C++ and each of these “objects” is implemen-
ted as a class. This design allows to easily extend the
current protein model by new interaction types or new
functionalities. In addition to the moving particles also
fixed objects can be defined which interact with the
mobile particles. These fixed objects are used to imple-
ment the walls of the simulation box or any rigid struc-
tures within this volume.

To model a particle, first a “Protein” object is defined.
When this Protein object describes a rigid particle like a
folded protein or a colloidal particle then it contains a
single “Gestalt” object, which in turn contains the
“Shape” objects that are responsible for the interactions.
To implement a bead-spring polymer or a flexible pro-
tein, the “Protein” object contains multiple “Gestalt”
objects and the definitions of the springs between these
Gestalten. With this local definition of the connecting
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springs a single template molecule can be set up from
which then multiple copies are drawn and inserted into
the simulation during runtime. A “Protein” object thus
defines an entity which is inserted or removed from a
simulation as a whole.

The next level in the model hierarchy are the indepen-
dently moving “Gestalt” objects. They keep track of their
position and orientation and contain the “Shape”
objects. The “GeomShape” is always present. It handles
the generation of the random forces and then converts
the total force accumulated during the current timestep
into the corresponding displacement. Here the Langevin
and the Brownian Dynamics propagation schemes are
implemented. The other Shape objects model the physi-
cal interactions with the other particles, that is, during
the force evaluation every pair of “Gestalt” objects com-
pares whether they have Shapes of the same type. Then
these two Shapes calculate their contribution to the
mutual interaction.

Currently, five types of interactions are implemented.
These are shielded Coulombic interactions between sets
of point charges in the “EstatShape”, effective short range
van-der-Waals type interactions in the “vdWShape”,
bonds from harmonic and quartic terms in the “Bond-
Shape”, external forces via the “ExternalShape”, and
hydrodynamic interactions via the “HIShape” objects.

Electrostatic interactions are implemented in a Debye-
Hiickel model via point charges which interact via a
screened Coulomb potential ®;[49]. For a pair of
charges g;and gilocated on different “EstatShapes” the
interaction energy is

1 exp[—« (i — Bir)]

Dy = k
U dmeeo (14 kBa/2) rie

2)

Here, ¢ is the relative dielectric constant of water and
go the vacuum dielectric constant. The shielding from
ions in the solvent is captured in the inverse Debye
length k= 1/I. In most cases, the point charges are
embedded in the proteins where there are no counter
ions to shield the interaction. This is accounted for by
By= b+ by, the sum of the effective burial depths b,and
by. The point charges are defined in an internal coordi-
nate system of the “EstatShape”, which in turn can be
placed at an arbitrary position and orientation into the
coordinate system of the enclosing “Gestalt”.

In brownmove the short range interactions between
the surfaces of the proteins or colloidal particles are
modelled phenomenologically. For this, an arbitrary
number of so-called van-der-Waals spheres can be
defined in the “vdWShape” objects, which then interact
via a Lennard-Jones-type potential depending on the
closest distance r;, between their surfaces.
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For each van-der-Waals sphere a position within the
“vdWShape”, a radius, and a “colour” index are speci-
fied. For each pair of colours different interaction para-
meters can be specified to model, e.g., short-range
hydrophobic attractions or purely repulsive hydrophilic
interaction patches. For numerical stability, the diver-
ging Lennard-Jones interaction can be linearized when
the spheres overlap more than a specified distance.

Bonds between “Gestalt” objects of the same “Protein”
can be hooked up at arbitrary positions on the “Bond-
Shapes”. This means that bonds are not restricted to the
centers of a “Gestalt” but that they can be attached
eccentrically. Currently, harmonic and quartic terms are
implemented for the bond potentials.

Similar “hooks” for externally specified forces are
provided by the “ExternalShape” objects. Currently
implemented are a harmonic potential which allows to
confine the position of a “Gestalt” to a certain position,
a constant vectorial force which can be used to model,
e.g., gravitational forces or a constant fluid velocity, and
a shear field.

Langevin and Brownian propagation schemes

To derive the implicit solvent propagation scheme for
Brownian and Langevin Dynamics simulation, we start
from Newton’s equations of motion for the full system
of the large proteins or colloidal particles and the many
small solvent molecules. In this equation the forces F;on
particle i, which lead to a change of its velocity v;, stem
from the two-body interactions with all other particles.

dl/i
mi = Fi=) F(ra) (4)
ke

Here, mi is the mass of particle i and all pairwise
forces are assumed to be conservative, i.e., they are the
derivatives of an energy landscape depending on mutual
distances. When we are interested in the motion of only
the larger particles, the many explicitly considered sol-
vent molecules can be replaced, as Einstein suggested,
by a mean-field heat bath consisting of a Stokesian fric-
tion term F, = -yv with the friction coefficient y, and
random kicks from the thermal motion of the solvent
molecules. Their exact form is not known but it is suffi-
cient to know that their average should vanish for an
isotropic system and that they have an average tempera-
ture dependent strength. This is conveniently expressed
via the statistical moments of the resulting displace-
ments R;over a time interval At:

(Ri) = 0 and (RiRy) = 2Dy, At (5)
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Here the indices i and k denote coordinates and the
coupling between the coordinates via the displaced sol-
vent is given by the diffusion tensor (Djy) which has 3N
x 3N entries when only the translation of the N particles
is considered. For a simulation it is more convenient to
express the solvent induced random displacements in
terms of effective forces f; which lead to the same dis-
placements. With the relation between the friction coef-
ficient v; and the self diffusion coefficient D;; = kgT/y;
we get

(fi) = 0 and f;;) =

Then the many-particle Newton equation (4) reduces
to a Langevin equation with a friction term and the
effective forces F; = ¥ Fy+ f;which are the sum of the
external and the random forces.

dl}i
dt

2(kgT)?

6
Di; At ©)

! (Fi —yw) (7)
m;

Assuming that the force F; remains constant during a
short time interval ¢ this equation can be integrated analy-
tically to give the velocity v(At) and the displacement Ax
(Ar) at the end of the timestep At when the initial velocity
at the beginning of the time interval was v,. For conveni-
ence we drop the coordinate index i for the following.

v(AL) = F + [vo — F:| exp [_yAt] (8)
Y Y

m

Ax(Aty= A ™ (F —vo) (1 —exp [_ym]) )
y y \y m

These two equations can now directly be used to pro-
pagate the particles in the implicit-solvent approximation.
This Langevin Dynamics (LD) propagation scheme
assumes that the solvent can be substituted by time aver-
aged random kicks and Stokesian friction and that At is
so small that the external force remains essentially con-
stant when the particle is displaced by Ax(A¢). When the
time step Af in the above equations (8) and (9) is much
larger than the so-called velocity relaxation time ¢ = m/
v, the exponentials vanish and the LD propagation
reduces to the standard Brownian Dynamics (BD) scheme
(10)

F F
v(At) =  and Ax(At) = At
14 14

where the velocity follows the force instantaneously
and the displacement due to the external forces
increases linearly with the timestep At.

While in practical applications both for LD and BD
there is the usual upper limit for the integration timestep
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where the numerical accuracy deteriorates, there is also a
conceptual lower limit for At in the BD approximation.
As a rough estimate, At should not be smaller than about
ten times the velocity relaxation time t,y. For BD simula-
tions with a single particle type one usually finds an
integration timestep which is large enough to be concep-
tually usable and also short enough for a numerically
stable propagation, but this may not work any more
when proteins of different sizes are considered. Then, a
timestep which is stable enough for the faster smaller
particles may be unphysically short for the slower larger
ones. For more details on this problem see reference [17].

In brownmove both algorithms are implemented and
can even be used within the same simulation. When a
mass is defined for a given particle then the LD propa-
gation scheme is used by the “GeomShape” object,
otherwise the BD algorithm. Even though the LD equa-
tions of motion (8) and (9) look more complicated than
the simple BD equations (10), the additional numerical
costs are negligible, because most of the terms are con-
stants and the effort for the actual propagation step
scales linearly with the number of particles, while the
evaluation of the pairwise forces scales quadratically.
We therefore advocate to always use the LD propagation
scheme for which only the easily controllable numerical
accuracy puts a constraint on the timestep.

Fast Hydrodynamics
Hydrodynamic interactions, which describe the coupling
of the particle velocities via the displaced solvent, are
modelled in “brownmove” via the Rotne-Prager-Yama-
kawa (RPY) tensor extended to handle rotation and
particles of different radii [21-23,25,26]. There is no the-
oretically rigid formulation for hydrodynamic interac-
tions of overlapping spheres of different sizes. However,
a working ansatz was proposed by Durchschlag and Zip-
per [50]. For practical applications the extended RPY
HI-tensor can handle a slight overlap of the beads
before the results become numerically unstable. Conse-
quently, in brownmove projects in which the hydrody-
namic interaction between different physical particles is
defined by their outer surface, any HIShape should be
accompanied by a VdwShape with a repulsive short ran-
ged potential to prevent the particles to come closer
than their actual, hydrodynamically relevant radii.

The effective hydrodynamically corrected external
forces F*™ acting on particle i are given by

Di,
fieﬂ = Z Dll-l- F;,
k

(11)

Applying the hydrodynamic coupling to the random
forces is not that straightforward due to “temperature
conservation"—the self diffusion of the particles which is
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a measure for their temperature is, for lower concentra-
tions, not affected by the hydrodynamic interactions
[51]. Consequently, the random forces have to be corre-
lated with the square root of the diffusion tensor, see
equation (5). The conventional Ermak-McCammon
algorithm [2] uses a numerically expensive Cholesky
factorisation for this. A numerically more efficient
approach is the Chebychev approximation suggested by
Fixman [30]. Other approaches which work well for spe-
cial cases are the mean-field ansatz of Heyes [8] or the
accelerated Stokesian dynamics of Banchio and Brady
[31]. An even faster approximation could be derived by
us by proposing effective HI correlated random forces
similar to equation (5). To account for the square root
of the diffusion tensor, expansion coefficients are used
in the spirit of a Taylor series.

7 =c > Bie I;k fr (12)
k 1

The normalisation factors C; and the weights [
can be determined approximately and the resulting
truncated expansion approximation hydrodynamics
(TEA-HI) recovers at least 90% of the correlations at a
runtime scaling which increases only quadratically with
the particle number [18]. With this approximation the
importance of hydrodynamic interactions can now be
investigated for all those systems for which the also
quadratically increasing runtime for the evaluation of
the pairwise interactions is possible. With f;; = 1 the
normalisation factors of equation (12) can be deter-
mined from

b1 > 8 Dij 13
= + ik
C? " " DiiDia, 13
and the quadratic equation
_ _ _1)e2 — (N —
1 \/1 [N=1)e2— (N—-2)¢] (14)

P = (N—1)e2 — (N —2)e

where € = <Dy /D;;> is the average of the normalised
off-diagonal entries of the diffusion matrix. Apart from
the faster evaluation, this approximate form of the HI
has the advantage that the sums in equations (12), (13),
and (14) can be evaluated simultaneously with very low
memory requirements from the temporarily set up two-
body submatrices of the diffusion tensor. With this even
large many-particle simulations fit into the fast level-3
cache of current CPUs.

In “brownmove” the above TEA-HI algorithm is
implemented in the “HiShape” objects in which cur-
rently a single hydrodynamic sphere can be defined.
How the hydrodynamic coupling, which is based on an
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instantaneous flow field, can be combined with the LD
algorithm is explained in detail in reference [17]. The
basic idea is to apply the HI correlations to average
forces, which would lead to the same displacements dur-
ing the timestep in the BD picture, i.e., when the accel-
eration is ignored.

Coming back to the problem of bead overlap, in the
original algorithm of Ermak and McCammon the results
degrade with increasing overlap because the RPY tensor
does not cover this regime whereas with Fixman’s Che-
bychev approximation additionally the convergence
becomes slower due to the diverging range of the eigen-
vectors when the spheres start to overlap [52]. This then
requires more terms for the approximation to converge
to the specified accuracy. On the other hand, our TEA-
HI approximation resembles a Taylor expansion that is
always truncated after the first correction term regard-
less of the achieved accuracy. Consequently, the runtime
is not affected by the particle separation. As detailed in
[18], the truncation errors increase up to 5% in a dimer
of touching spheres which is less than the errors
involved in the long-range expansion RPY tensor. Con-
sequently, with a diffusion tensor that correctly
describes near-field HI, our method would lead to a
relative error of up to 5-10% for the pairs of close parti-
cles and less for all the further separated pairs of parti-
cles in the simulation.

Boundary conditions

In “brownmove” various boundary condition can be
used. The most simple scenario is an infinite simulation
volume which would be used, e.g., to verify the long
time diffusional behaviour of a flexible protein
assembled from multiple sub-units. To confine the par-
ticles, “brownmove” allows to specify combinations of
simple reflecting walls, one, two, or three dimensional
periodic setups, and walls with a “Gestalt”. By defining a
“Gestalt” for a wall, not only planar van-der-Waals sur-
faces can be defined but also static structures like mem-
brane proteins built from van-der-Waals spheres and
point charges. A “Wall” object can thus also be used to
model a rigid network of microtubili or non-mobile
vesicles around which the proteins have to find their
way. When periodic boundary conditions are specified,
“brownmove” uses image particles during the evaluation
of the interactions.

A special type of boundary condition is implemented
with the use of particle acceptors and injectors, which
allow to define constant density reservoirs and imple-
ment reactions at a membrane. The idea of a constant
density interface is the following [16]. When a large
simulation volume is divided by a virtual wall then parti-
cles will cross this boundary with an average rate that
depends on their density and their diffusion coefficient.
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Now the volume on the other side of the virtual wall
can be omitted when all particles that cross from the cis
to the trans side are removed from the simulation and
at the same time new particles are inserted randomly
close to the interface with a rate and distribution that
corresponds to the assumed density on the trans side.
When the density on the trans side is higher more parti-
cles will be inserted into the simulation than leave until
the density inside the simulation equals the density spe-
cified at the interface. Such an interface is especially
useful for simulations where the adsorption of particles
to surfaces is studied [11]. Here, the constant density
interface behaves like an infinitely large bulk and the
density above the surface will remain constant no matter
how many particles bind. The same algorithm can also
be used to model finite reservoirs or non-equilibrium
conditions that lead to a diffusion current through the
simulation volume. By taking out one type of particles
and inserting a different type at the same position reac-
tions like charge transfer can be modeled. More details
are given in reference [16].

Data analysis

For maximal flexibility the output of a brownmove
simulation is not directly saved to disk, which would
often result in unnecessarily large output files. The par-
ticle positions are rather piped into a command that is
specified in the setup file. In the most simple case this
command dumps the particle positions to a file. If, e.g.,
from a simulation of a bead-spring polymer only the
center of mass and the vector from the first to the last
bead is required at each output interval, the output
command would extract that information on the fly and
only save the processed output to disk. The output com-
mands can be simple scripts, full-fledged analysis tools,
or even multiple analysis programs chained together via

pipes.

Availability

The brownmove simulation package which was
presented here is freely available for academic use. The
latest version can be downloaded together with docu-
mentation and some examples at http://service.bioinfor-
matik.uni-saarland.de/brownmove.

Additional material

Additional file 1: Brownmove definition file for a constrained bead-
spring polymer. This (ASCII text) file defines a bead-spring polymer for a
brownmove simulation with five beads connected by springs between
the direct and the next neighbours. Each bead has a single van-der-
Waals sphere to prevent mutual overlap between the beads, a sphere for
hydrodynamic interactions, and two to four hook-up points for the
connecting springs. For further details see the comments in this protein
definition file.



http://service.bioinformatik.uni-saarland.de/brownmove
http://service.bioinformatik.uni-saarland.de/brownmove
http://www.biomedcentral.com/content/supplementary/2046-1682-4-7-S1.BDEF

Geyer BMC Biophysics 2011, 4:7
http://www.biomedcentral.com/2046-1682/4/7

Additional file 2: Simulation setup file for the bead-spring polymer
examples. This (ASCII text) file defines the global parameters, which
polymer to use, and the boundary conditions for the bead-spring
polymer example simulations. For details see the comments in the file.

Additional file 3: Example of a bead-train polymer definition file.
This brownmove protein definition file gives an example for how a short
bead-train polymer as sketched in Figure 2B can be defined in
brownmove. It consists of three rotating beads which have a van-der-
Waals sphere and off-center hooks for the springs between adjacent
beads. For more details see the comments in the file.

Additional file 4: Brownmove definition file for the N = 13 “elastic
protein”. For more details see the comments in this (ASCII text) file.

Additional file 5: Simulation setup file for the diffusion-between-
obstacles examples. Brownmove simulation setup file for a 2D periodic
box with two oppositely placed constant density interfaces and an array
of obstacles as sketched in Figure 9. The constant density interfaces and
the obstacles are defined in "boxWithObstacles.bdef” which is given as
additional file 6, while the mobile particles are defined in “simpleBead.
bdef” (see additional file 7). For more details see the comments in the
setup file.

Additional file 6: Brownmove definition file for a simulation box
with two constant density interfaces and a central array of fixed
spherical obstacles (see Figure 9). For more details see the comments
in this (ASCII text) file.

Additional file 7: Brownmove particle definition file for a minimal
spherical, uncharged, van-der-Waals particle used in the diffusion-
between-obstacles example.

Additional file 8: Brownmove particle definition file for the
agglomeration-with-network-analysis example simulation. As
sketched in Figure 10 A the particle consists of two displaced van-der-
Waals spheres with different “colour” indices. Together with the
parameter definitions in the simulation setup file (see additional file 9)
the spheres with colour 0 can stick to each other while all other pairs
have purely repulsive interactions. For more details see the comments in
this (ASCII text) file.

Additional file 9: Brownmove simulation setup file for the

agglomeration-with-network-analysis example simulation.
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