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Abstract

alpha-helical structures even at room temperature.

regulation of protein activity by small solutes in the cell.

Background: Minor changes in protein structure induced by small organic and inorganic molecules can result in
significant metabolic effects. The effects can be even more profound if the molecular players are chemically active
and present in the cell in considerable amounts. The aim of our study was to investigate effects of a nitric oxide donor
(spermine NONQate), ATP and sodium/potassium environment on the dynamics of thermal unfolding of human
hemoglobin (Hb). The effect of these molecules was examined by means of circular dichroism spectrometry (CD) in
the temperature range between 25°C and 70°C. The alpha-helical content of buffered hemoglobin samples (0.1
mg/ml) was estimated via ellipticity change measurements at a heating rate of 1°C/min.

Results: Major results were: 1) spermine NONOate persistently decreased the hemoglobin unfolding temperature T,
irrespectively of the NaT/K* environment, 2) ATP instead increased the unfolding temperature by 3°C in both
sodium-based and potassium-based buffers and 3) mutual effects of ATP and NO were strongly influenced by
particular buffer ionic compositions. Moreover, the presence of potassium facilitated a partial unfolding of

Conclusion: The obtained data might shed more light on molecular mechanisms and biophysics involved in the

Background

One intrinsic property of a protein is its ability to adopt
and maintain a certain range of characteristic shapes
within a given scope of temperature, pH, pressure, etc.
Mostly, these structural features are vitally important for
the protein’s functioning. Therefore, ability of some low-
molecular weight compounds to shift a protein’s confor-
mational equilibrium by binding proteins is used by cells
to orchestrate virtually all aspects of their life and even
death. Today, numerous cellular signaling pathways are
known, involving small molecules as key mediators, reg-
ulators and messengers but the very intimate structural
aspects of signaling interactions remain mostly undiscov-
ered. Some very interesting studies were recently reported
by [1] but the progress in this direction is rather slow
because of technical and experimental difficulties (the
events of interest occur at single-molecular level and have
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very short durations) and also because of certain disregard
from cellular biologists.

A few years ago we reported for the first time a
temperature-driven structural transition in mammalian
hemoglobins (Hb) that was closely related to the organ-
ism’s body temperature [2-6]. Those data were collected
using various techniques: micropipette aspiration [7], CD
spectroscopy [2], quasi-elastic light scattering [4] as well
as NMR spectroscopy and colloid-osmotic pressure mea-
surements [3]. The phenomenon of hemoglobin’s struc-
ture transition was later confirmed by partnering research
groups using neutron scattering [8,9]. We also addressed
potential modulating roles of the chemical environment,
especially pH and Ca?* concentration, in the manifesta-
tion of the discovered effect [5].

Nitric oxide (NO) has long been known to play impor-
tant roles in physiology, pathology and pharmacology,
being involved in numerous biological processes [10].
Evidence is growing concerning multiple chemical mech-
anisms of nitric oxide interaction with proteins. They
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mostly involve the cysteine residues in proteins. A pro-
cess of introduction of the nitric group into a pro-
tein molecule, known as nitrosylation, appears to be
a widely used mechanism of cellular metabolic regula-
tion but its exact implication in protein dynamics is still
unclear [11].

Another ubiquitous cellular messenger, adenosine 5’-
triphosphate (ATP) exerts most of its actions by inter-
acting with specialized proteins, both inside and outside
the cell [12]. Although characteristic domains like the
Rossmann fold are believed to be necessary for bind-
ing ATP molecules [13], some studies indicate that ATP
molecule affects also many proteins, lacking this “stan-
dard” ATP-binding sites. For example, the addition of
ATP to a diluted solution of collagen caused an appear-
ance of segment-long-spacing aggregates [14]. Also, the
change in the concentration of ATP in RBCs resulted in
alterations in Hb oxygen affinity [15]. In red blood cells,
the concentration of ATP is rather high (0.2-2.0 mM)
and therefore might influence properties of hemoglobin
considerably [16].

Regarding the ionic environment, Na™ (native ionic
radius 0.95 A) and K™ (1.33 A) demonstrate complex
hydration behavior, influencing the hydrogen bond net-
work of water in distinctly different ways. It was found that
water molecules in the hydration shell of K* are orienta-
tionally more disordered than those hydrating a Na™ ion
and are inclined to orient their dipole moments tangen-
tially to the hydration sphere [17,18]. In proteins, charged
and polar groups interact with these ions in quite different
ways too. Potassium generally exhibits stronger affinity to
proteins as compared to sodium [17,19]. Protein’s prefer-
ential affinity to potassium ions can possibly contribute to
their accumulation inside the living cell [12,20].

According to our hypothesis and as further logical
development of those studies we recently focused our
attention on the effects of regulators such as nitric oxide,
ATP and others on the conformational and hydrody-
namic properties of proteins in various ionic environ-
ments. Using the quasi-elastic light scattering technique,
we found that nitric oxide in micromolar concentrations
decreased the aggregation temperature of hemoglobin sig-
nificantly. A comparable concentration of ATP, instead,
counteracted thermal denaturation. The magnitude and
direction of the observed effects strongly depended on
concentrations of KT and Na* in the solution.

Here we present data on the effects of the NO-donor
spermine NONOate, ATP, as well as sodium and potas-
sium ions on the thermal unfolding of human hemoglobin.
The study was based on temperature scans of hemoglobin
solutions with circular dichroism (CD) spectroscopy. The
CD technique has established itself as a standard tool is
studying polymers because of its sensitivity to conforma-
tional changes [2,21].
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Methods

Buffers

Two different buffers were used for sample prepara-
tion in order to examine the role of K*/Na™ balance
in the medium: sodium-based phosphate buffered saline
(137 mM NaCl, 2.7 mM KCl, 8.1 mM Nay;HPOg4, 1.76
mM NaH,PQ,), further referred to as Na-buffer, and its
potassium-based counterpart (termed bellow as K-buffer)
composed of 0.1 M KCl, 61.3 mM Ky;HPOy and 5.33 mM
KH3POy4. Both buffers had pH 7.4 and osmolarity 290 +10
mosm/l.

Sample preparation

Human hemoglobin was prepared from fresh erythrocytes
(RBCs) obtained from healthy volunteers [22]. Briefly, 50
1L of heparinized blood were collected from each donor’
fingertip. Obtained RBCs were washed twice in 1 mL of
Na-buffer or K-buffer solution, respectively, using cen-
trifugation at 1000 g for 5 minute at 25°C. The RBC pellet
was hemolysed by adding 200 uL of distilled water and
5 min vigorous shaking. Afterwards, the samples were
centrifuged at 18000 g for 5 minute and 25°C to remove
RBC ghosts. Finally, ionic strength and pH of the obtained
hemoglobin solutions were adjusted to mimic physio-
logical values mosm/l 10 £+ 290 and pH 7.4 [22]. The
samples were stored at 4°C until the measurement started
(typically 2 to 4 hours).

Prior to the CD measurement, the samples were twice
syringe-filtered through a 0.2 um Whatman® nitrocellu-
lose filters to remove large particles. The concentration
of Hb was adjusted to 0.1 mg/mL and controlled pho-
tometrically as described elsewhere [15,23] using a UV-
Vis V-550 Jasco® spectrophotometer (Jasco Labor- und
Datentechnik GmbH, Gross-Umstadt, Germany).

Sample treatment with spermine NONOate and ATP

The use of nitric oxide donors allows avoiding many
difficulties inherent in gaseous nitric oxide (II) applica-
tions [24]. Nucleophilic complexes of NO with amines
(NONOates) appear to meet most of research criteria
[25]. These compounds are self-decomposing in solution
producing 2 mole of NO per mole of the substrate. In this
study spermine NONOate was chosen for simplicity in
handling, storage stability and its convenient half-life in
solution (about 39 min at 37°C) [10,24].

Just before the measurement, freshly prepared sper-
mine NONOate stock solution in a corresponding buffer
was injected through a 0.2 um filter into the scintillation
vial containing the sample to achieve the Hb/NONOate
molecular ratio close to 1:1 during the initial phase of
NONOate’s decay). In the control group, the same volume
of the corresponding pure buffer was added.

In a similar manner, freshly prepared ATP stock solution
was introduced into the Hb sample to achieve the Hb/ATP
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molecular ratio close to 1:1 immediately before the mea-
surement. Spermine NONOate (N-(2-Aminoethyl)-N-
(2-hydroxy-2-nitrosohydrazino)-1,2-ethylene-diamine) of
98% purity was purchased from Merck® KGaA, Darm-
stadt, Germany. Adenosine-5-triphosphate (di-sodium
salt) of 98% purity was purchased from Carl Roth GmbH,
Karlsruhe, Germany.

Circular dichroism measurement

The far-UV CD spectra were measured at the J-815 Cir-
cular Dichroism Spectrometer (Jasco Labor- und Daten-
technik GmbH, Gross-Umstadt, Germany). Temperature
was adjusted through a PC-controlled built-in Peltier ele-
ment. Thermal unfolding of hemoglobin was followed
between 25°C and 70°C. The samples were initially equili-
brated at 25°C for 10 minute and then the temperature has
been increased gradually up to 70°C with a rate 1°C/min.
During this, wavelengths scans (wavelength steps 1 nm,
average time = 4 s, time response = 2 s, band width =1
nm) were performed in the UV-region between 190 and
260 nm. Blank spectra of buffer solutions were subtracted
from the Hb spectra at each temperature point and the
offset was corrected at 250 nm. At 222 nm, CD spectra
are most sensitive to changes in the alpha-helical content
of proteins [26]. Therefore, absolute ellipticities at 222 nm
were taken as a measure of the alpha-helical content of the
protein [27] and plotted against temperature. Decrease of
ellipticity magnitude at 222 nm was interpreted as loss of
alpha-helical structures (unfolding).

Generally, the CD-measurements can be complicated by
the fact that typical aqueous buffer systems (phosphate,
sulfate, carbonate, and acetate) strongly absorb in the UV-
range where sample’s structural features exhibit differen-
tial absorption of circularly polarized light. These groups
usually interfere with the CD-signal at concentrations
exceeding 100 mM. Therefore, concentration of phos-
phates in our samples was always kept bellow mM 100.

Experimental data analysis

For statistical analysis, each experimental group was mea-
sured at least as triplicate. The raw CD data (ellipticity
as function of temperature) were initially extracted as
ASCII text and processed by the MATLAB® software
(Math Works, Massachusetts, USA). Further analysis and
visualization of the data were done using OriginPro 8®
(OriginLab Corporation, USA). To compare the groups,
mean values and corresponding standard deviations were
calculated.

Results

The measured far-UV CD spectra of Hb samples expect-
edly displayed a typical alpha-helical signature with local
minima at 208 and 222 nm [28]. Upon raising the tem-
perature from 25°C to 70°C by equidistant temperature
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steps, the ellipticity response was far from linear (Figure 1,
a-d). When the ellipticities at 222 nm were plotted versus
temperature, two distinct kink points usually appeared so
that the curves had a characteristic s-shape (with increas-
ing temperature: 1% gentle slope, steep slope, 2" gentle
slope). The unfolding temperature, T, was calculated as
the intersection point between the best-fit tangential lines
(Figure 1) drawn to the 1st gentle slope and the steep slope
parts of the curve [4].

Effects of spermine NONOate and ATP on T, of Hb samples
in Na-buffer

For the control samples prepared in Na-buffer, T, was
found to be 64.0 & 0.6°C, slightly varying from individual
to individual. Addition of spermine NONOate signifi-
cantly decreased the unfolding temperature: T;, was found
to be 56.0 + 1.3°C (Figure 2a). Upon addition of ATP
the T, on the contrary, was shifted towards 66.0 &+ 1.2°C
(Figure 2c). Remarkably, when ATP and nitric oxide (NO)
appeared in the solution simultaneously, T, values did not
differ from those obtained for ATP alone (65.5 &+ 1.3°C)
(Figure 2b, d). Table 1 shows the effect of NONOate and
ATP in Na-buffer on Hb unfolding.

Effects of spermine NONOate and ATP on T, of Hb samples
in K-buffer

In case of using the potassium-based buffer instead of
the sodium-based one, unfolding of the samples occurred
at 62.0 = 1.1°C, whereas the addition of the NONOate
resulted in a shift of T, towards 59.0 £ 1.7°C (Figure 3a).
Adding ATP to the sample increased its thermal stability
up to 65.0 £ 1.4°C (Figure 3c). When ATP and nitric oxide
donor were applied together, the T}, values did not signif-
icantly differ from those of the NONOate-group 61.0 £
1.1°C, (Figure 3b, d). Like the Na-samples, the potassium-
based solutions also demonstrated the s-shaped profile of
thermal unfolding of human hemoglobin. Table 2 shows
the effect of NONOate and ATP in K-buffer on Hb
unfolding.

Effect of sample composition on Hb’s ellipticity measured
at 25°C

Scrutiny at initial parts of the curves on Figures 2 and
3 suggests that not only thermal unfolding but also Hb’s
initial alpha-helical content was significantly impacted by
the molecules present in the solution. Initial sample ellip-
ticities measured at 222 nm for K-buffer were all lying
approximately between -22.5 mdeg and -27.5 mdeg irre-
spectively to ATP and NONOate content. The ATP-free
Na-based samples had typical ellipticities in the range
between -33 mdeg and -37 mdeg, whereas the addition of
ATP always caused the ellipticity raise (i.e. less negative)
to -14 mdeg to -18 mdeg, indicating partial unfolding of
alpha-helices.
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Figure 1 Best-fit tangential line method for protein unfolding temperature calculation. Calculation of the unfolding temperature (T,) using
the best-fit tangential lines method, which is the intersection point between the first gentle line slope and the second steep slope.
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Figure 2 Influence of ATP and spermine NONOate on unfolding of Hb samples prepared in Na-buffer. Influence of ATP and spermine
NONOate on unfolding of Hb samples prepared in Na-buffer. a) control groups vs. NONOate groups; b) ATP groups vs. ATP+NONOQOate groups; €)
control groups vs. ATP groups; d) NONOate groups vs. ATP+NONOate groups.
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Table 1 Effect of NONOate and ATP in Na-buffer on Hb
unfolding

Sample unfolding temperature Ellipticity sD

(Ty) (°C) (mean)
Control-Na Buffer 64.0 -31.7 06
NONOate 56.0 314 13
ATP 66.0 -15.1 1.2
NONOate+ATP 65.0 131 13
Discussion

Without any doubt, protein conformational properties
depend on multiple physico-chemical factors, such as
temperature, pH, ionic strength as well as presence of
numerous protein-binding groups and molecules [29].
Protein unfolding with subsequent aggregation plays a
crucial role in biology and in many applications of pro-
tein science and medical engineering [30]. Regulation of
protein stability in the cell using small organic and inor-
ganic molecules has been evolutionary proved as a rapid,
reversible, and tunable method of metabolic control.
Despite its biological importance, little is known about the
mechanisms and potential signaling pathways involved
in the formation of molecular aggregates [31]. Among

Page 5 of 7

numerous low-molecular mediators of cellular activity,
nitric oxide and ATP have attracted our interest, because
of their ubiquity in living systems. Our attempts to study
hemoglobin temperature denaturation were related to our
earlier interesting findings on unfolding “abnormalities”
around body temperature [2-6].

The use of CD spectroscopy is generally of great
advantage in protein structural studies [32,33]. CD is
intrinsically very sensitive to changes in the secondary
structure of proteins [31,34]. It is to a lower extent
affected by molecular aggregation and protein concen-
tration effects [35]. Therefore we attribute the observed
ellipticity changes predominantly to the partial thermal
unfolding of hemoglobin a-helices, and, in much lesser
extent, to changes in aggregation and/or in molecular size
and shape.

We compared the data reported here with our data
obtained previously with dynamic light scattering (DLS)
using identical hemoglobin samples. The aggregation
temperature T, obtained with DLS and the unfolding tem-
perature T, from CD measurements, respectively, were
very close to each other [2,7].

One possible mechanism of the observed “destabilizing”
effect of NO on hemoglobin might be its penetration into
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Figure 3 Influence of ATP and spermine NONOate on unfolding of Hb samples prepared in K-buffer. Influence of ATP and spermine
NONOate on unfolding of Hb samples prepared in K-buffer. a) control groups vs. NONOate groups; b) ATP groups vs. ATP+NONOQate groups; €)
control groups vs. ATP groups; d) NONOate groups vs. ATP+NONOate groups.
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Table 2 Effect of NONOate and ATP in K-buffer on Hb
unfolding

Sample Unfolding temperature Ellipticity sD
(Ty) (°Q) (mean)

Control- K Buffer 62.0 -226 1.1

NONOate 59.0 2215 1.7

ATP 65.0 -23.8 14

NONOate 61.0 -239 1.1

the protein’s hydrophobic core [36]. Such “loosening” of
the Hb structure caused by nitric oxide could contribute to
accelerating its unfolding. Furthermore we may speculate
about the action of nitric oxide on the hydration shell of
hemoglobin. Such action would become plausible consid-
ering a re-arrangement of the hydrogen bond network of
the vicinal water [3]. Revealing of particular mechanisms
must remain subject of our future studies.

The addition of ATP in our experiments systematically
resulted in an increase of the Hb’s unfolding tempera-
ture T, by approximately 2°C. We interpreted the effects
of ATP in both sodium- and potassium-based buffers as
“moderate secondary structure stabilization” Moreover, if
ATP and NONOate were added simultaneously to the K-
based Hb samples, no “destabilization” effect of NONOate
was observed, but rather a slight increase of the Hb’s
unfolding temperature. In contrary to that, in the Na-
based Hb samples simultaneous occurrence of NONOate
and ATP resulted in dramatic Hb unfolding. These data
strongly suggest involvement of Na/K-environment in Hb
stabilization/destabilization previously hypothesized[18].

Physiologically, that would mean, for example, that due
to big differences in Na/K composition between extracel-
lular and intracellular media a protein might have very
different levels of unfolding (i.e. conformational shape
being inside or outside the cell. This, in turn might result
in exposure/hiding of certain recognition sites, leading
to totally different signaling outcomes, for example, it
could contribute to protein sequestering mechanisms in
the organism.

It has been previously argued by several independent
groups that sodium as a “structure stabilizer” and potas-
sium as a “structure disrupter” have different affinity
to proteins, especially to denatured proteins [18,19,37].
Moreover, many residues show a preference for TK -
binding as compared to Nat [37]. Our results support
these observations by bringing further evidence that
potassium has stronger impact on hemoglobin unfolding
and destabilization. In other words we must assume that
inside red blood cells where the potassium concentration
is very high the hemoglobin structure is quite loosened
which could help explain the low cytosolic viscosity and
consequently the fast (deformation) of red blood cells at
changing shear forces observed in vivo.
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Conclusion

We examined the unfolding of hemoglobin when imple-
menting NO-donor spermine NONOate, ATP, and the
combination of these compounds with elevating temper-
ature in different buffers. Our main observations were: 1)
the nitric oxide donor systematically caused a reduction of
hemoglobin’s unfolding temperature, T}; 2) cationic com-
position of the medium affected the manifestation of the
ATP- and NO- effects, and 3) the effect of ATP on the
T, of Hb shows distinctly different outcomes: In pure Na-
buffer as well as in pure K-buffer ATP stabilized the pro-
tein’s secondary structure and shifted T, by approximately
2°C toward higher temperatures. Simultaneous addition
of NONOate and ATP led to an apparent compensa-
tion each other’s structural effects. ATP in sodium-based
medium facilitated the unfolding of Hb.

We attribute the unfolding of Hb in the presence of
NONOate to the in-situ generated nitric oxide since
the magnitude of the effects strongly correlated with
the kinetics of the NONOate decay in aqueous solu-
tions. Hereby we claim a new biophysical aspect of nitric
oxide action, defined as facilitation of thermal unfold-
ing and thus destabilization of the secondary structure of
hemoglobin.
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