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Abstract

Advances in computational biology allow systematic investigations to ascertain whether internal chemical gradients
can be maintained in bacteria — an open question at the resolution limit of fluorescence microscopy. While it was
previously believed that the small bacterial cell size and fast diffusion in the cytoplasm effectively remove any such
gradient, a new computational study published in BMC Biophysics supports the emerging view that gradients can
exist. The study arose from the recent observation that phosphorylated CtrA forms a gradient prior to cell division
in Caulobacter crescentus, a bacterium known for its complicated cell cycle. Tropini et al. (2012) postulate that such
gradients can provide an internal chemical compass, directing protein localization, cell division and cell
development. More specifically, they describe biochemical and physical constraints on the formation of such
gradients and explore a number of existing bacterial cell morphologies. These chemical gradients may limit in vitro
analyses, and may ensure timing control and robustness to fluctuations during critical stages in cell development.

Commentary

Bacteria keep surprising us: they are social and communi-
cate with each other [1], and they are well-organised intern-
ally using cytoskeleton-protein homologues from larger
eukaryotic cells [2]. Now the current study explores the
conditions under which bacterial cells can establish spatial
chemical gradients, potentially acting similarly to morpho-
genic fields for differentiation in animal embryos [3,4].
Examples are potentially widespread: phosphorylated CtrA
(CtrA-P) in C. crescentus [5], virulence protein IcsA in
Shigella flexneri [6], as well as MinCD proteins for de-
termining midcell for cell division in Escherichia coli and
Bacillus subtilis [7]. MinC functions similarly to kinase
Poml in the significantly larger Schizosaccharomyces
pombe (fission yeast) by inhibiting cell division and hence
controlling cell size [8-10] (see Figure 1). Intracellular gra-
dients seem to matter and sometimes also need to be
suppressed. For instance, in E. coli chemotaxis [11,12] the
internal gradient of CheY-P is suppressed by co-localising
the phosphatase with the kinase at the receptor cluster so
all flagella encounter the same concentration of the re-
sponse regulator [13]. Hence, internal chemical gradients
are not so unusual after all. Already 60 years ago, Alan
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Turing proposed concentration patterns in non-equilibrium
steady states [14,15] — states which often surprise our
equilibrium-physics trained minds.

Previously, it was believed that chemical gradients in-
side a small micron-sized bacterial cell are quickly wiped
out by fast diffusion. This is similar to the notion that
bacteria are unable to directly sense external spatial gra-
dients, only temporally by comparison measurements
while swimming. However, such subtle questions are dif-
ficult to assess, and this is where computational biology
can help [16]: computational analysis can guide difficult
experiments and allow us to scan through multiple para-
meters in search for interesting mathematical solutions.
For instance, such analysis showed that spatial chemical
gradients can, in principle, be sensed by bacteria after all
[17,18] and an example was later found [19]. The explor-
ation of the physical limits of sensing was then also
extended to sensing of external chemical gradients with
unexpected predictions [20].

Tropini et al. [21] ask under what conditions a localised
source and sink on two cell ends can lead to a significant
chemical gradient. Extending previous studies by others
[22], they systematically explored different cell geometries,
including round, rod-shaped, curved, Y-shaped and divid-
ing cells. They also investigated biochemical effects such
as enzyme localization and saturation, and explored large
parameter regimes to address robustness. Their principal
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Figure 1 Examples of intracellular chemical gradients in microbes. (A)

sizes (A-C) are not drawn to scale.

into swarmer cell (top daughter) and stalked cell (bottom daughter). (B) Alternating MinD gradients (oscillations) determine FtsZ recruitment at
midcell and hence the cell-division plane in E. coli. (C) Pom1 gradient in fission yeast has a similar function to Min system in bacteria. Relative cell

CtrA-P gradient in C. crescentus determines asymmetric cell division

finding is that gradients can exist as long as the kinetics of
the source and sink are on timescales faster than the typ-
ical time required to diffuse across the length of the cell.
However, due to restrictions from numerical solutions of
the reaction-diffusion equations, no linear stability analysis
could be done, e.g. to see how gradients respond to per-
turbations. Additionally, due to the continuum approxi-
mation for molecular concentrations, no stochastic
fluctuations could be included to see how molecular noise
affects gradients [23]. Does this lessen the impact of the
paper? — In light of the advanced computational algo-
rithms used, we would argue no. The authors offer a sys-
tematic exploration of parameter values to investigate
robustness (and effectively the influence of noise on a gra-
dient), and connect to actual biological examples from
various bacterial species. Furthermore, while other mo-
lecular components and structures such as chromosomes
were neglected, molecular crowding would actually favour
the establishment of gradients by increasing the time scale
for movement between the poles.

If cell division provides asymmetry anyway, e.g. via old
and new cell poles, why deploy gradients prior to cell div-
ision? For instance, in C. crescentus second messanger
cyclic-di-GMP is asymmetrically distributed between the
two daughter cells right after cell division for motility and
organelle formation [24]. The authors propose an intriguing
possibility. Intracellular gradients may ensure timing con-
trol and robustness to fluctuations during the life of the cell
prior to cell division. Bacteria and fission yeast, both of
which have cell walls, need to actively regulate cell division
- otherwise widespread cell geometries and large fluctua-
tions would be unavoidable [25]. Utilising a gradient might

also be better for cell-size control than a threshold-crossing
mechanism of a uniformly distributed protein using dilu-
tion during growth [26]. Of practical importance for the ex-
perimentalist, these chemical gradients may limit the
usefulness of in vitro analyses since concentrations are
homogenised. However, the study also cautions in vivo ana-
lyses using GFP-tagged proteins, as changing the size of
proteins may alter their diffusion constants [27].

Conclusions

Lewis Wolpert had the foresight that morphogen gradi-
ents can provide the necessary positional information for
structuring the developing embryo [28,29]. The current
study extends this powerful idea to tiny bacteria. Further-
more, the results by Tropini et al. highlight the utility of
mathematical modelling in future studies of intracellular
organization in bacteria, and illustrate the complex spatial
patterning that can be achieved even in the absence of
membrane compartmentalization.
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