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Abstract

Background: Nanoparticles can be used as markers to track the position of biomolecules, such as single proteins,
inside living cells. The activity of a protein can sometimes be inferred from changes in the mobility of the attached
particle. Mean Square Displacement analysis is the most common method to obtain mobility information from
trajectories of tracked particles, such as the diffusion coefficient D. However, the precision of D sets a limit to
discriminate changes in mobility caused by biological events from changes that reflect the stochasticity inherent to
diffusion. This issue is of particular importance in an experiment aiming to quantify dynamic processes.

Results: Here, we present simulations and 3D tracking experiments with Gold Nanorods freely diffusing in glycerol
solution to establish the best analysis parameters to extract the diffusion coefficient. We applied this knowledge to

the detection of a temporary change in diffusion, as it can occur due to the transient binding of a particle to an
immobile structure within the cell, and tested its dependence on the magnitude of the change in diffusion and

duration of this event.

Conclusions: The simulations show that the spatial accuracy of particle tracking generally does not limit the
detection of short binding events. Careful analysis of the magnitude of the change in diffusion and the number of
frames per binding event is required for accurate quantification of such events.
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Background

Introduction

Cells present a dynamic environment for the biomolecules
that orchestrate life: important processes such as intracel-
lular or intramembrane trafficking [1-3] protein dynam-
ics [4, 5] and gene delivery [6, 7] can be studied in
detail by analyzing the mobility of the molecules involved.
Single-Molecule Tracking (SMT) is a powerful tool to
investigate such dynamic processes. SMT discloses infor-
mation unobtainable using ensemble techniques, because
following molecules individually can reveal variations
in behavior that occur during the process, including
rare events that are otherwise obscured in the ensem-
ble. The high precision of SMT relies on the possibil-
ity to localize a single molecule with higher accuracy
than the diffraction limit [8]. Ultimately, the accuracy
of localization depends on the optical brightness of the
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molecule. Because most biomolecules can not be detected
using optical microscopy, they need to be labeled with
fluorescent markers like organic dyes or fluorescent pro-
teins. Alternatively, metal or semiconductor nanoparti-
cles have been used as labels to track single molecules.
Single-Particle Tracking (SPT) [9] is advantageous over
SMT because nanoparticles are generally brighter than
fluorophores and can therefore be tracked with better
precision. Moreover, as opposed to single fluorophores,
nanoparticles don’t bleach, which extends the time span
over which a single molecule can be followed. However,
nanoparticles are larger than single fluorophores, and will
thus affect the mobility of the molecules of interest.

From SPT one can obtain long time traces of single
molecules, that are then analyzed to quantify mobility.
The Mean Square Displacement (MSD) of the particle
reveals characteristic modes of mobility like free diffu-
sion, confined diffusion and active transport, which are
characterized by parameters such as diffusion coefficient
(D), velocity and confinement size. The ability to track
individual molecules, labeled with nanoparticles, with
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nanometer precision and over long times would make
it possible to observe transient changes in the mobility
of the molecule that could not be observed using other
methods. For example, the binding of a transcription fac-
tor to its DNA target has been challenging to detect at
the single-molecule level. Though Fluorescence Correla-
tion Spectroscopy (FCS) and SMT approaches have been
used to study this process [10, 11], the short length of
the traces, due to photobleaching and/or diffusion out of
the detection volume, generally directs data analysis to
ensemble properties rather than those of single molecules.
Therefore, SPT could provide a unique alternative for
monitoring the dynamics of an attached molecule.

How reliable are the mobility parameters extracted from
such SPT experiment? In the case of active transport, the
localization accuracy is the most important factor influ-
encing the precision of the particle velocity. In the case of
diffusion an evaluation of the accuracy of D is more com-
plex: diffusion is a stochastic process, and this requires the
measurement of many independent localizations to obtain
D with high precision. The precision of D is of high rele-
vance for biological experiments, as it sets a threshold to
discriminate a biologically meaningful change in diffusion
from the intrinsically stochastic variations.

Here we investigate how accurate the diffusion coeffi-
cient of a particle can be measured in a SPT experiment,
and how well we can detect a transition in its diffusion
behavior. The issue of accuracy of diffusion coefficients
has been addressed before, with a theoretical approach
and simulations [12, 13], but mainly in 2D. 2D SPT can
provide higher temporal resolution, but the images are
limited in space to single planes and the tracking can be
performed only as long as the particle stays in the plane:
the use of 2D SPT is therefore limited to tracking in cell
compartments that can be approximated to 2D such as
the cell membrane [14, 15]. The simulations in this report
extend such analysis to 3D tracking experiments.

We used Gold Nanorods (GNRs) as labels for 3D SP
using Two Photon excitation. GNRs are cylinder-shaped
gold nanoparticles with sizes ranging between few tens
to several hundreds of nanometers: they are bigger than
organic dyes and fluorescent proteins, and can therefore
slow down the tracked molecule. Nevertheless they offer
several advantages over fluorophores: their luminescence
is up to 100 times higher (yielding a spatial resolution that
is 10 times better, [16]), and can be tracked for hours as
they are not affected by bleaching or blinking [17]. More-
over, GNRs are easy to functionalize and are compatible
with live cells conditions [18].

We acquired multiple z sections forming a 3D image
stack using a multifocus two photon microscope as
described before [16]. Two photon excitation reduces out-
of-focus excitation and yields a good spatial resolution
both in the longitudinal and axial directions. We scan an
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array of focal spots using a scanning mirror: this way we
obtain a wide-field illumination of the sample.

Some 3D SPT techniques have a higher temporal reso-
lution compared to z sectioning, like for example the use
of cylindrical lens to extract 3D positioning [1]. However,
the use of astigmatism is not compatible with two-photon
excitation, and thus lacks the benefits of higher signal-
to-noise; Total Internal Reflection microscopy [19] gives
high spatial and temporal resolution, but within a lim-
ited 3D area, not sufficient to cover the entire volume
of a cell; orbital tracking [20] tracks only one particle at
the time and cannot benefit from the high throughput of
parallel tracking. A good alternative to multi-focus exci-
tation two-photon microscopy is two-photon Light Sheet
Microscopy [21] that provides good penetration depth in
the sample and a comparable acquisition speed; for SPT
these two techniques present similar challenges.

The outline of this paper is as follows: first, we address
the influence of positional accuracy of the 3D tracking
scheme on the precision of the extracted MSD with sim-
ulations; then we analyze the accuracy of the obtained
diffusion coefficient with simulations and experiments;
we optimize the parameters that are used to obtain D from
the MSD; finally we simulate traces containing a change in
diffusion behavior and establish the experimental bound-
aries for resolving such changes.

Methods

Experimental setup

The acquisition of 3D movies of single GNRs was per-
formed on a home-built two-photon multifocus scan-
ning microscope as previously reported in [16], with
some small changes. A near IR pulsed laser (Coherent
Chameleon Ultra) was used for excitation; the laser beam
was split in an array of 625 beams by a diffractive optical
element (DOE, custom made by Holoeye). A fast scanning
mirror, driven with an Archimedean spiral function, was
used to scan the array of beams over the sample: this way
we obtained a wide and homogenous excitation on an area
of about 60 um x 60 pum, and collect images of tens of
GNRs within this area. A piezo-stage (PIfoc, PI) was used
to move the objective in the z-axis to collect 3D images.
We acquired images with an EMCCD Camera (Photomet-
rics QuantEM 512SC). The frame size was 400 pixels x
400 pixels, corresponding to 70 pm x 70 pm and the sepa-
ration between z slices was typically 0.5 pm. We acquired
10 z slices per stack, at a rate of 10 frames/s: the time
resolution of our 3D localization was therefore 1 s/stack.

Sample preparation

Samples of GNRs of two different sizes were used: 47+4
nm x 14£2 nm GNRs were synthesized through a seed-
mediated method [22], while 53+6 nm x 1643 nm GNRs
were purchased from Nanopartz (A12-25-780-CTAB).
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Both GNRs samples were functionalized with a polyethy-
lene glycol (PEG) layer before use. GNR sizes were
obtained from Transmission Electron Microscope (TEM,
JEOL JEM 1010) images of both batches. The TEM images
also provided a measure for the size dispersion within
the two samples. The GNR sizes used for our theoreti-
cal calculations were increased by the thickness of a PEG
layer. The size of the PEG layer (which cannot be seen
in TEM) was measured independently using Fluorescence
Correlation Spectroscopy (FCS, [23]), yielding an effec-
tive PEG layer thickness of 8.1 nm (see Additional file 1:
Figure S1). GNRs were first suspended in small volumes of
demineralized water, then glycerol was added to reach the
desired concentration of 95 and 90% glycerol. For SPT in
glycerol both GNR samples were excited at a wavelength
of 770 nm.

Simulations

Simulations of movies of diffusing GNRs were performed
in LabVIEW using the following procedure: a set of 3D
trajectories was created, according to a given diffusion
coefficient D (or multiple values of D, in case of changes
in behavior); a stack of empty frames was then filled with a
3D Gaussian peak for each time coordinate, and amplitude
and standard deviation of the peak were set using typical
values obtained experimentally for single GNRs (ampli-
tude=1000 a.u., sy, = 300 nm, 5, = 650 nm); Poissonian
noise was added to each pixel in the peak in order to sim-
ulate shot-noise; an offset (1000 a.u.) and a background
noise (1 a.u.) were added to the entire 3D stack of images,
reflecting the camera gain settings and detection noise.
As opposed to experimental movies, in simulated movies
we introduced only one GNR to prevent incorrect trajec-
tory assignments when GNRs would cross. We simulated
videos with a frame rate of 10 frames/s, as typically col-
lected by our setup. The frame size was 300 pixels x 300
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pixels (corresponding to about 52 pum x 52 um, and the
separation between z slices was 1 pum.

Data analysis

Image analysis was also performed in LabVIEW. The same
analysis was applied to simulated and real movies. In each
3D stack of images, peaks were detected and fitted with a
3D Gaussian function: from the fit we obtained position,
intensity, offset and width of each peak. When more than
one trace was present in the movie, peaks were connected
to traces using a minimal excursion criterion. Once traces
were obtained, an MSD analysis was performed. An illus-
tration of the method is shown in Fig. 1, and details of the
MSD analysis process are described in the next section.

Theory

Localization accuracy

Figure 1a shows a typical 2D image of a number of GNRs,
whose peaks are convoluted with the Point Spread Func-
tions (PSFs) of the microscope. The localization uncer-
tainty o of a single particle in a 2D fluorescent image
follows [8, 24]:

a2
o = 74_

where s is the width of the PSE, N, is the number of pho-
tons, a is the pixel size and b the number of photons in the
background noise. As is characteristic for shot-noise, the
uncertainty in position decreases with increasing num-
ber of photons. The uncertainty in the case of 3D images
will depend on the 3D image acquisition scheme. Previ-
ously, we reported an experimental increase in x and y
accuracy in 3D data that originated from the additional
photons recorded in all frames above and below focus that
contribute to a 3D peak ([16]). These measurements were

8ms2h?

+ a2N2 (1)

o
(=)
£
w o
Prig %)
S "bk =
P
L ot ™~
~ & > -.:'5‘, \\>
5
e
~ o 7
< <&
- S
2, N o~ s T (s)
R

Fig. 1 Steps to extract the diffusion constant of single GNRs in glycerol. From a movie of 3D stacks of frames (as the frame in a), trajectories of single
GNRs were extracted (b), and on each of them a Mean Square Displacement (MSD) analysis was performed. The MSD plot (€) was fitted to a line with
a slope that corresponds to the diffusion coefficient, and offset proportional to the 3D positional accuracy
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made using fixed, immobile GNRs. In the results section
we will quantify this effect. However, changes in positions
between slices in a stack will affect the positional accuracy.

Accuracy of MSD analysis

For now we will ignore the movement between slices in
the stack and analyze single traces (Fig. 1b) by calculation
of the Mean Square Displacement. The MSD of a tra-
jectory is the average of all the squared displacements 72
occurring within time steps of different duration t:

1 &
MSD() = — 3 (rise = 1)? )
T =1

where 7, is the number of steps, equal to (T-t)/z. T is the
total length of the trace and t is the time lag between dis-
placements. The diffusion of a particle is quantified by the
coefficient D, described by the Stokes-Einstein equation:

kT

© 6rmR
where k is the Boltzmann constant, T the temperature,
R the radius of the particle and n the viscosity of the
medium. For free diffusion in an isotropic medium the

MSD has a linear dependence on t [4], and in 3D it
results in:

MSD(t) = 6Dt + 60> (4)

®3)

Fitting Eq. 4, one can obtain the diffusion coefficient
D, as well as the 3D localization accuracy o. Figure 1c
shows an example of an MSD plot. A parameter that has
a large influence on the accuracy of the fit is the number
of MSD points that are included in the fit.In the exam-
ple in Fig. 1c, the GNR trace is about 100 points long, and
we fitted the first 10 MSD points to obtain D. When deal-
ing with shorter traces though, the points in the MSD plot
at larger time delays become increasingly random, due to
the stochastic nature of diffusion and the fewer measure-
ments that contribute to the mean. Including these points
in the fit may yield an erroneous D. Due to this inherent
statistical variance in the MSD, the error on the obtained
D can be significant and will depend on the number of
points that are included in the fit. The relative error in D
is defined as:

D — Dieasured
D

Qian et al. [13] showed that p depends on the total
length of the trajectory N and on the number of fitting
points #, and approximates to:

(5)

-

2n

P = ﬁ (6)

where K=N-n. Weighting MSD points according to the
sample size could yield a better accuracy, but Thompson
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[8] showed that the effect of this correction is negligi-
ble. Michalet [12] extended Quian’s analysis to conditions
with a finite localization uncertainty to determine the best
number of fitting points for the analysis. He calculates the
relative error to be:

_]." 2 3
p_{6K2(4Kn +2K +n—n’)

1 1—2Z\17"?
+E |:2nx+x2 (1 + 2K>:|}

where x is the reduced positional uncertainty and is
defined as:

(7)

o
¥~ Dat ®
and At is the sample time. Eq. 7 converges to Eq. 6 for x =
0, large N (N ~ 1000) and K >> # [12]. In our work we
use Michalet’s formula for p as we have a non-zero posi-
tional uncertainty and traces shorter than 1000 points.
Michalet showed that choosing a non-optimal number of
fitting points results in a diffusion coefficient noticeably
larger than the actual one. He calculated the best number
of fitting points to be:

n =2+ 23x"2 )

Therefore, the optimal number of fitting points to use
depends on positional uncertainty, diffusion coefficient
and sampling time. In a real experiments the expected D
is typically not known, so # is not easy to evaluate. An
estimate of the order of magnitude of the D to expect is
a first good step. A higher sampling rate or a lower pre-
cision increases the value of the optimal # to use. We
tested Michalet’s results with 3D simulations using dif-
ferent positional uncertainties and diffusion coefficients.
Then we validated these results with experiments using
GNRs with known D, compared D to the value measured
with SPT and calculated the relative error p.

Detection of changes in D

Having a well-defined, constant D, is however highly sim-
plistic when doing SPT in cells: over time a molecule will
undergo transitions in the diffusion behavior. An exam-
ple of these traces is depicted in Fig. 2a. We simulated
and analyzed traces containing a transition in diffusion,
in particular a period with a lower diffusion coefficient
(Fig. 2a), mimicking for example the binding of a par-
ticle to a fixed structure in the cell. To analyze these
traces, we needed to detect the transition points. From a
rolling window MSD analysis, a plot of the variations of
D within the trace was obtained (Fig. 2b). This D(t) plot
was then analyzed with a Student’s T-test, evaluating the
probability that two populations belong to the same distri-
bution. In our case we used a modified version of Student’s
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Fig. 2 Detection of diffusion transitions. a A simulated trajectory, which contains a brief period of reduced mobility. In this gap D was 0,0001 um?/s ,
while the D in the rest of the trace was 0,05 um?/s. The gap is highlighted with a green circle. b The diffusion coefficient along the trajectory D(t)
was calculated using a 15 points rolling-window method. € A Welch test yielded minima in the P-value plot, that indicate possible transition points
used to divide the trajectory in subtraces. d MSD analysis of each subtrace yielded D values as shown
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T-test, the Welch’s test [25], optimized for populations
with different variances. It calculates the T-statistic as:

X; — X

T="21 22 (10)
Sy 5
N12+N22

where X1, X, are the means of the two samples, s1, sp their
variances and N, Ny the samples sizes. The probability
that the two samples are described by the same distri-
bution is calculated using the T-distribution probability
density function [25]:

) 2\"7
p(T,v)—\/EF (%) (1+v) (11)

in which I' is the gamma function.
The degrees of freedom v are approximated by the
Welch-Satterthwaite equation as:

2
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A p-value is calculated for each point in the D plot, con-
sidering two windows of the same size around the point.
The minima in the probability plot (Fig. 2c) correspond to
the points in the trace where a diffusion transition is most
likely to happen. Rolling windows with different sizes (N
and Nj in Egs. 10 and 12) didn’t show noticeable differ-
ences. We chose a rolling window size of 15 steps, and
a Welch test sample size of 15 or 10, when the gap was
shorter than 15 steps. Transition points were assigned
using a threshold for P and the initial trace was divided
in subtraces. We tested different values for the thresh-
old, and we obtained the best compromise between false
negative and false positive results with a value of 10719,

As shown in Fig. 2¢, not all the detected transition
points corresponded to real transitions: some were misas-
signed due to stochastic fluctuations in D. We performed
asecond Welch test on these subtraces using window sizes
corresponding to the entire subtraces length. The transi-
tions confirmed by the second test were accepted as real
transition points. Despite this second statistical test, it was
not always possible to assign each transition point cor-
rectly. For example in Fig. 2c at ¢ = 25s a change in D
was wrongfully detected. A new MSD analysis was finally
done on the final subtraces to obtain the mean D, which is
plotted in Fig. 2d.
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Results and discussion

Spatial and temporal resolution

We first performed simulations to obtain the positional
accuracy for 3D images with fixed peak positions. We
tested cases with different numbers of photons N at fixed
background noise b. We simulated static GNRs: the uncer-
tainty was calculated from the difference between the
input coordinates and the coordinates obtained from the
Gaussian fit and plotted in Fig. 3a. For 2-dimensional
data only the central frame in each 3D stack was used.
In this case, the positional uncertainty was consistently
worse than expected based on Eq. 1. A similar discrepancy
between theory and simulations was reported previously
[8], and explained with the approximations used to derive
Eq. 1. As anticipated, using 3D images decreases the posi-
tional uncertainty, due to the larger number of photons
collected for a peak.

In the analysis of dynamic data, the temporal resolution
plays an important role: the finite time between acquisi-
tions can obscure fast dynamic processes. Moreover, in
real experiments, the movement of the particle occurs also
between slices within a 3D stack: we simulated this move-
ment within a stack for a range of diffusion coefficients:
as shown in Fig. 3b, the effect of the movement within
stacks can be dramatic for large diffusion coefficients. The
positional uncertainty in the x-y plane for the lowest dif-
fusion constant (D = 0.01 um?/s) is about 9.5 & 0.6 nm,
for the highest (D = 0.5 um?/s) o is 143.0 & 8.4 nm. In the
z direction, the uncertainty follows the same trend but is
even more pronounced. In the experiments on GNRs per-
formed with our setup, the number of photons collected
was very high, due to the high brightness of the two-
photon signal of GNRs and low background. From Eq. 1
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we calculate a positional accuracy of 4 nm (see Additional
file 1: Figure S2) for an average N, of 4000 photons. How-
ever, due to GNR movement between slices, the positional
uncertainty is increased: considering the diffusion coeffi-
cient range expected for our experiments (between 0.02
and 0.07 um?/s), we expect the effective positional uncer-
tainty in x,y to be around 20 nm, and in z around 40
nm. The uncertainty values obtained from the MSD fit is
arund 40 nm: this value includes the x-y and the z compo-
nents, and is comparable to the o value in z obtained from
simulations.

Factors that determine the uncertainty in the detection of D
The stochastic nature of diffusion is another source of
uncertainty in the determination of the diffusion coeffi-
cient D. Following Eq. 6, the length of the trace and the
number of MSD fitting points have a large influence on
the error in D. In Fig. 4a, results from simulations show
that the best number of fitting points for data with low
positional uncertainty is 2, for different values of D, in
accordance with Michalet’s results. When the positional
uncertainty increases (Fig. 4b), it has a large influence on
the first MSD points, so more MSD points are required
for an accurate determination of D. The length of the ana-
lyzed traces also affects the precision of the obtained D
(Fig. 5): longer traces allow for a better statistics in the cal-
culation of the MSD. The positional uncertainty can be
calculated from the measurement independently using the
number of photons (Eq. 1). Figure 5 shows that fixing the
positional uncertainty o in the MSD fit slightly improves
the final result.

In summary, these precautions can reduce the error on
the obtained D: using long traces, fixing the positional
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Fig. 3 The positional uncertainty in 2D and 3D simulations depends on the brightness and the temporal resolution. a The localization uncertainty
improves with increasing number of photons emitted from the GNR. The blue line represents the theoretical value obtained from Eq. 1. The images
obtained from simulations were analyzed in 2D (fitting only one slice per 3D stack, blue dots) and in 3D (fitting the whole 3D stack, black squares). In
3D, the localization accuracy increases as compared to the 2D case. Each point in the graph is an average of 10 sets of 200 simulated images. The
background noise was kept constant at b = 0.5. b The effect of the movement of the particle between frames for an acquisition time of 10 fr/s. As
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Fig. 4 Stochastic variations in diffusion limit the accuracy of D measurements. a In case of low positional uncertainty (o= 10 nm), the best number
of fitting points is 2, for different values of D. b In case of higher positional uncertainty (o = 200 nm), errors in position detection dominate the error
in D for small displacements, and the best number of MSD points increases (see inset). Each point in the plot is the average p obtained from 100

uncertainty of the MSD fit, and limiting the fit to the first
two MSD points. Nevertheless, even with high positional
accuracy, one will obtain relatively large errors in D when
measuring for finite times due to the stochastic nature of
diffusion.

Experimental validation of D accuracy using GNRs in
glycerol

We next tested our results on experimental traces of GNRs
diffusing in glycerol with a well-known diffusion coef-
ficient, rather than in a cellular environment, which is
not homogeneous and therefore the diffusion coefficient

60 |
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p (%)

20 -

10 +

Fig. 5 Optimizing the accuracy of D measurements for single
trajectories. Using longer traces improves the estimate of D, lowering
p. Fixing the positional uncertainty o (dashed line) in the MSD fit
reduces in the relative error compared to fitting it (continuous line).
Each point is the average p obtained from 100 simulated traces with
length as indicated in the legend and D=1 um?/s

would not be well-defined. We compared the statistical
variations in D to the variations predicted based on the
size dispersion of our GNR samples. Experiments were
performed with two GNRs sizes and two glycerol con-
centrations. The expected values of D, calculated using
Eq. 3, are listed in Additional file 1: Table S1. The values
of D are at least two orders of magnitude smaller than
the typical diffusion coefficients of proteins, due to the
large size of the GNRs. Smaller GNRs may be used, but
this would imply a weaker luminescence and a faster dif-
fusion, which make it more difficult to accurately quantify
the mobility. What follows is the results obtained from
the first sample (52 nm x 16 nm GNRs in 95% glycerol),
while the results from the other samples are summarized
in Additional file 1: Table S1. In Fig. 64, the relative errors
p obtained experimentally are compared to the theoreti-
cal errors (Eq. 7). Fixing o lowers the error in the estimate
of D, especially when a smaller number of MSD points is
used. The collected traces had a large variation in length:
as the GNRs were free to move, the trace length was
limited to the time the GNRs stayed in the volume of
view. Consistent with Egs. 6 and 7 and the simulations,
longer traces feature a more accurate D. In Fig. 6b only
the traces longer than 80 points were used for analysis:
this decreased the relative error from 40% to less than
20%. Curiously, while the theoretical value of the relative
error increases with the number of MSD fitting points, in
the experimental values it had little or no influence. Using
only the long traces, the precision slightly decreased with
a number of MSD points larger than 5. In all cases the
errors on D obtained experimentally were smaller than
the ones calculated theoretically: this is not surprising, as
the theoretical errors correspond to the standard devia-
tion of the MSD curve, hence to the maximum value of the
error [12, 13]).
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fitting points. In €) we compare the values of p(D) obtained from traces of all lengths (from 10 to about 100 points, black squares) with the ones
obtained from only traces longer than 40 points (blue squares) and 80 points (cyan); in all three cases the analysis was performed fixing the positional

In Fig. 6c, we compare the experimental values
(obtained fixing the positional uncertainty) for all the
traces, traces longer than 40 points (about 1 min) and 80
points (about 2 min). The first thing to notice is the dra-
matic decrease in the D error when using longer traces.
For the longest traces, the smallest number of MSD fitting
points yields the smallest error. Therefore, the minimum
error in the calculation of D is obtained using only traces
longer than 2 min, fixing the positional uncertainty and
using only 2 fitting points: in these conditions we got a
relative error as low as 10%.

In Fig. 7a the measured values of D are compared with
the expected ones (calculated with Eq. 3). The variation in
D based on the size dispersion of the GNRs, measured in
TEM images, is depicted in the histograms using a blue
shade around the expected value. As seen before, longer
trace lengths improve the accuracy of D: when we lim-
ited the analysis to traces longer than 40 points (about 1
minute, Fig. 7b) and 80 points (about 2 min, Fig. 7c) the
measured D increases from 0.020 um?/s to 0.022 pum?/s
and 0.026 pum?/s, where the expected D was 0.028 um?/s.

The relative errors in D obtained for this GNR sample and
other samples are reported in Additional file 1: Table S1.
In the experiments with shorter GNRs, the relative errors
were higher, due to their faster diffusion which results
in shorter traces. The variation in the measured D was
always larger than the variation predicted based on the
size dispersion (reported in the same table), because of the
stochastic variations in D that increase its variability.

Detection of changes in diffusion in single particle
trajectories

One of the unique possibilities of SPT is to follow a single
molecule over a long time, and to directly detect changes
in its behavior. The previous discussion on the difficulties
to obtain a correct D implies, however, major challenges.
In this paragraph we tested how accurately a temporary
reduction in diffusion constant of a particle (a ‘gap’) can
be detected. Following the approach above, MSD analysis
was performed with 2 points and fixed positional accuracy
calculated from the intensity of the peak. The diffusion
coefficient used for the initial and final phases was 0.05
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um?/s, which we typically measure for GNRs inside cells
(both in nucleus and cytoplasm). We varied D in the gap
from 0.0001 um?/s to 0.035 pum?/s. The residual mobil-
ity of a protein bound to DNA has been reported to be
in this range [26, 27] . The initial and final phases were
100 s, while we tested different lengths of the gap phase.
We evaluated the effectiveness of the detection in the
obtained diffusion coefficient and gap duration (Dg,, and
teap) in every set of 100 simulations. We considered Dy,
correct when it was within + 20% of the set D, and we
considered £z, correct when it was within £ 10% of the
set length. An example of a trace simulated using a Dy
of 0.0001 um?/s is shown in Fig. 2a. In this figure, the gap
is not clearly seen in the trajectory (as the time points are
very close to each other), but it is easily distinguishable in
the D plot. In real experiments the difference in mobility
can be smaller.

First, we simulated traces with different Dy, keeping
the gap length constant to 100 s. In Fig. 8 the Dy, was set
to 0.0001, to 0.01 and to 0.035 um?/s. The scatter plots
show the resulting Dy, and tg,, for 100 different simu-
lations. In the first case (Dgy, = 0.0001 um?/s, Fig. 8a, b)
the transition is obvious. The Welch analysis yields rea-
sonable results: in about 65% of the cases a gap with
the right length is detected. The average Zy,, is always
overestimated, and therefore also the average Dg,y. The

positional uncertainty also contributes to the overesti-
mate of Dy, especially for low Dy, (see Additional file 1:
Figure S4 a, b for Dy, = 0 and 0,001 umz/ s). For this rea-
son, only 10% of the cases yield Dg,, within 20% of the
input value.

In the second case, where Dy, = 0.01 um?/s (Fig. 8c, d),
the transition is also clearly detectable. Both the correct
taap and Dy, are detected in about 60% of the cases. In
Fig. 84, it is clear that most incorrect values originate from
a missed transition, which results in a double duration of
the gap phase, and an increased Dgg,.

In the last case (Fig. 8e, f), Dgqp = 0.035 um?/s, only 30%
lower than the D outside the gap. Given an uncertainty of
at least 10% in the detection of the single diffusion coef-
ficient (see previous paragraph), we expect this difference
to be hard to detect. Indeed, looking at D(t) (Fig. 8e) we
can still distinguish a change in D in the common trend,
but the fluctuations in each single curve obscure transi-
tions in D. In less than 10% of the traces a gap with the
correct length is detected, but the correct Dy, is detected
in 60% of the cases. This is due to the small difference
between D inside and outside the gap: in the cases where
the transition is detected at a different point in time, the
obtained D will still be good enough, being an average
between D and Dg,p. In about 40% of the simulations
no transition is detected (Fig. 8f). In Additional file 1:



Carozza et al. BVIC Biophysics

Page 10 of 13

0 50 100 150 200 250 300

0 50 100 150 200 250 300

t(s)

0 50 100 150 200 250 300

t(s)

Fig. 8 Limits to the detection of changes in diffusion. D(t) plots obtained from the rolling-window analysis (a, ¢, @) and scatter plots of Dyqp vs the
length of the gap (b, d, f). The simulated D(t) is plotted in black line. The D outside the gap was set to 0,05 pm2/s. Dgap =0.0001 um?/s for a, b,
Dgap=0,01 um?/s for ¢, d and Dgap = 0,035 um?/s for e, f. For every case, 100 traces were simulated and analyzed: a, ¢ and e show the D(t) plot for
8 example traces. Results from all 100 traces are shown in b, d and f. The ranges of correct Dgqp and tyqp are highlighted with blue lines in the scatter
plot. The traces were analyzed using a rolling window and a Welch sample of 15 points

b 300 . " Ak &
D|,, = 0,0088 +- 0,01 um®/s
250 [ -
o =122 +-47 s
A
2001 SRV Wl 1
® 150 A 1

Al A
50 - 1
h A
0 . . . .
000 001 002 003 004 005
2
Dgap (um®/s)
d 30— . r .
D,,, = 0,0154 +- 0,008 um’/s
2501 |, °* J
t,,=118+145s
»
200 Addam ,
A
@ 150 A J
g A 4
" 100 iﬁﬁ 1
7y
50 -
N .
0 1 1 1 1 1
000 0,01 002 003 004 005
2
Dgap (um®/s)
f a0 : ; =
= - 2 A A
250l Dm- 0,0402 +-0,0062 um’s & N :
tw—226+-765 n A .
200 A A‘}fh
A
A
» 150 A
g L 44 s
=100 * A,
EN
50 - aAlfa
A
0

000 001 002 003 004 005
D_ (um%s)
gap

Figure S3 more cases with different values of Dy, are
reported.

Thus, changes in D smaller than 30% can easily be dis-
tinguished from averaged data, but in single trajectories a
reduction of about 80% is required to detect 60% of such
changes.

We expect transient changes to become more obscured
as their duration shortens. We performed a similar analy-
sis as function of the length of the gap £y, keeping Dy,
constant at 0.01pm?/s. In Fig. 9 the results obtained using
a gap length of 25 s and 10 s are plotted. In the case of
teap = 100 s, (Fig. 8¢, d), both the correct tg,, and Dy, are
detected in about 60% of the cases. Reducing Zg), to 25 s
(Fig. 9a, b), in only 35% of the simulations the correct £4,;,
is detected, and the correct Dy, in 20% of the cases. A gap

of only 10 s (Fig. 9¢, d) is very hard to detect: in none of the
cases the correct g,y or Dy, was detected. More results
are reported in Additional file 1: Figure S4.

It is difficult to give an absolute limit of gap detectability
in terms of Dyggy or tg,,. A summary of the dependence of
the detectability of the gap is plotted in Fig. 10. If the gap
is long (100 s) and the ratio between D and Dy, is more
than 50, at least 60% of the gaps are correctly assigned. If
the length of the gap is reduced to 25 s we can still detect
50% of the gaps, but for gaps shorter than 20 s the detec-
tion rate drops to 0. We still detected a transition in 60%
of the cases if D/Dg,, = 5. But for D/Dg,p, =2, the gap
was detected in only 20% of the cases, even for long traces
(100 s). In conclusion, a transient decrease in D can be
detected easily when the D in the gap is very low, and the
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length of the gap is not too short. A similar conclusion is
obtained for the detectability of the correct Dg,p, with a
difference: a small Dy, won't be fit correctly due to the
noise introduced by the positional uncertainty (Additional
file 1: Figure S5).

To improve the precision of the results, a more com-
plex measurement and analysis scheme could be used,
that makes use of more parameters to detect subsec-
tions; for example, one could simultaneously measure the
polarization of the signal. When applicable, other mobil-
ity parameters such as direction of the motion, velocity or
confinement could be fit to the MSD curves. When such
parameters are different during the binding of GNRs to
cellular structure, Welch analysis can be performed, as in
[28, 29]. The final p-value, obtained by multiplying the p-
values of different parameters, will give a more correct
assignement of the transition points and consequently
more precise estimates of £y,, and Dgyp.

In practice, measuring D and Dy, of a protein will
depend on the size of the protein and on the local vis-
cosity of the environment. The smaller the molecules, the
larger the difference in the diffusion coefficient when it
binds to its substrate and the easier to detect the event

accurately. The size of the GNR will set an upper limit to
the diffusion coefficient that will be measured. The affin-
ity of the protein is directly reflected in the ratio of the
time between binding events and the lifetime of the bound
complex, the latter being referred to here as tg,. The
first may be affected by the presence of a GNR. A wide
range of binding times have been reported for example for
DNA binding proteins in vivo, ranging from sub-seconds
[26] to several minutes [30]. The ability to track a sin-
gle protein bound to a GNR will give a more detailed
insight in the reaction kinetics and how the complex
cellular environment affects this reaction. Here we have
shown that using GNRs as labels can, in many conditions,
resolve single binding events with nanometer and second
accuracy.

Conclusion

Quantification of diffusion is challenging, especially under
experimental conditions with limited accuracy, time reso-
lution and finite length of the measurement. By perform-
ing simulations and experiments in controlled conditions,
we established few guidelines to minimize the error on the
MSD and consequently on D:
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1. use long trajectories: the larger the number of time
points in the trace the better the MSD is; in our case,
doubling the trace length from 1 min to 2 min
yielded a two-fold improvement of the precision in
the detected D.

. in case of small positional uncertainties, theory and
results from simulations suggest to use only the first
two points for fitting the MSD.

. fixing the positional uncertainty during the MSD fit
improves the evaluation of D.

These findings reinforce previous theoretical reports
[8, 13]. In our case we tracked GNRs in 3D with an uncer-
tainty of 4 nm based on shot-noise limitations, which
increased to about 40 nm due to the movement of parti-
cles between each acquisition. With these conditions, the
best approximation of D was within 10% of the expected
value of D. Such a high precision could not be achieved
using fluorophores as GFP or synthetic dyes as quantum
dots, because their low signal provides a low spatial res-
olution, and their bleaching or blinking behavior make it
impossible to collect long trajectories.

Given the challenges to extract a precise value of the
diffusion coefficient, the analysis of changes in mobility
needs extra care. We simulated traces with ‘gaps’ in the
diffusion, as it can occur when a particle is temporarily
immobilized, for example by specific binding to a cellular
structure. The detectability of such gaps depends criti-
cally on the difference in the diffusion before and during
the binding, determined mainly by the size of the ligands,
and the length of the binding event. In our conditions
and optimizing the MSD analysis as described, the detec-
tion of the gap was possible with a probability equal or
higher than 50% only when the gap was longer than 20 s
and the D in the gap was less than 5 times smaller than
the D in the rest of the trace. These findings are appli-
cable for all types of SPT methods in which individual
traces are analyzed without averaging. We expect that

many events characterized by a short duration or inducing
alimited change in diffusion are overlooked in such exper-
iments because of the stochastic character of diffusion. In
any case, using large particles may produce brighter and
more stable signals, but reduces the diffusion coefficient,
making the difference in D between free and immobile
particles smaller.

Note added in Proof

After the manuscript was accepted, we learned that
Mortensen et al. (Optimized localization analysis for
single-molecule tracking and superresolution microscopy,
2010, Nature Methods) pointed out that Eq. 1 overesti-
mates the 2D positional accuracy by 30%, which agrees
very well with the 2D simulation results, as shown in
Fig. 3a. For 3D tracking, this correction is counter-
weighted by the improved accuracy resulting from fitting
multiple slices, also shown in Fig. 3a. This empirical obser-
vation validates using Eq. 1 for estimations of the offset in
the MSD plots.

Additional file

Additional file 1: Supplementary Figures. The PDF files contain
supplementary figures and a supplementary table. (PDF 1403 kb)
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