Resizing neighbourhood When the neighbourhood used in a simulation is changed, the value of $J_{_{\mathit {CPM}}}\phantom {\dot {i}\!}$ , and $P_{_{\mathit {CPM}}}\phantom {\dot {i}\!}$ and $\lambda _{p\,{}_{\mathit {CPM}}}\phantom {\dot {i}\!}$ in 2D, or $S_{_{\mathit {CPM}}}\phantom {\dot {i}\!}$ and $\lambda _{s\,{}_{\mathit {CPM}}}\phantom {\dot {i}\!}$ in 3D, have to be modified, such that the effective values remain the same (Eq. 31, Eq. 32, Eq. 34). This can be achieved by setting $J_{_{\mathit {CPM}}}'=\frac {\xi _{\textit {old}}}{\xi _{\textit {new}}}J_{_{\mathit {CPM}}}\phantom {\dot {i}\!}$ , where ξ old and ξ new are the perimeter scaling factor before and after resizing the neighbourhood, respectively. Likewise, $P_{_{\mathit {CPM}}}'=\frac {\xi _{\textit {new}}}{\xi _{\textit {old}}}P_{_{\mathit {CPM}}}\phantom {\dot {i}\!}$ , $\lambda _{p\,{}_{\mathit {CPM}}}'=\frac {\xi _{\textit {old}}^{2}}{\xi _{\textit {new}}^{2}}\lambda _{p\,{}_{\mathit {CPM}}}\phantom {\dot {i}\!}$ , $S_{_{\mathit {CPM}}}'=\frac {\xi _{\textit {new}}}{\xi _{\textit {old}}}S_{_{\mathit {CPM}}}\phantom {\dot {i}\!}$ , and $\lambda _{s\,{}_{\mathit {CPM}}}'=\frac {\xi _{\textit {old}}^{2}}{\xi _{\textit {new}}^{2}}\lambda _{s\,{}_{\mathit {CPM}}}\phantom {\dot {i}\!}$ . Details on calculating ξ are in Step 2 of Table 4.