Resizing neighbourhood When the neighbourhood used in a simulation is changed, the value of $$J_{_{\mathit {CPM}}}\phantom {\dot {i}\!}$$, and $$P_{_{\mathit {CPM}}}\phantom {\dot {i}\!}$$ and $$\lambda _{p\,{}_{\mathit {CPM}}}\phantom {\dot {i}\!}$$ in 2D, or $$S_{_{\mathit {CPM}}}\phantom {\dot {i}\!}$$ and $$\lambda _{s\,{}_{\mathit {CPM}}}\phantom {\dot {i}\!}$$ in 3D, have to be modified, such that the effective values remain the same (Eq. 31, Eq. 32, Eq. 34). This can be achieved by setting $$J_{_{\mathit {CPM}}}'=\frac {\xi _{\textit {old}}}{\xi _{\textit {new}}}J_{_{\mathit {CPM}}}\phantom {\dot {i}\!}$$, where ξ old and ξ new are the perimeter scaling factor before and after resizing the neighbourhood, respectively. Likewise, $$P_{_{\mathit {CPM}}}'=\frac {\xi _{\textit {new}}}{\xi _{\textit {old}}}P_{_{\mathit {CPM}}}\phantom {\dot {i}\!}$$, $$\lambda _{p\,{}_{\mathit {CPM}}}'=\frac {\xi _{\textit {old}}^{2}}{\xi _{\textit {new}}^{2}}\lambda _{p\,{}_{\mathit {CPM}}}\phantom {\dot {i}\!}$$, $$S_{_{\mathit {CPM}}}'=\frac {\xi _{\textit {new}}}{\xi _{\textit {old}}}S_{_{\mathit {CPM}}}\phantom {\dot {i}\!}$$, and $$\lambda _{s\,{}_{\mathit {CPM}}}'=\frac {\xi _{\textit {old}}^{2}}{\xi _{\textit {new}}^{2}}\lambda _{s\,{}_{\mathit {CPM}}}\phantom {\dot {i}\!}$$. Details on calculating ξ are in Step 2 of Table 4.