Radford SE, Dobson CM: From computer simulations to human disease: emerging themes in protein folding. Cell. 1999, 291-298.
Google Scholar
Jaenicke R: Protein self-organization in vitro and in vivo: partitioning between physical biochemistry and cell biology. Biol Chem. 1998, 237-243.
Google Scholar
Digel I, Maggakis-Kelemen C, Zerlin K, Linder P, Kasischke N, Kayser P, Porst D, Temiz AA, Artmann G: Body temperature-related structural transitions of monotremal and human hemoglobin. Biophys J. 2006, 91 (8): 3014-3021. 10.1529/biophysj.106.087809. [PM:16844747]
Article
Google Scholar
Artmann G, Burns L, Canaves J, Temiz-Artmann A, Schmid-Schonbein G, Chien S, Maggakis-Kelemen C: Circular dichroism spectra of human hemoglobin reveal a reversible structural transition at body temperature. Eur Biophys Js. 2004, 33 (6): 490-496. 10.1007/s00249-004-0401-8. [PM:15045474]
Article
Google Scholar
Artmann G, Kelemen C, Porst D, Buldt G, Chien S: Temperature transitions of protein properties in human red blood cells. Biophys J. 1998, 75 (6): 3179-3183. 10.1016/S0006-3495(98)77759-8. [PM:9826638]
Article
Google Scholar
Cameron I, Ord V, Fullerton G: Water of hydration in the intra- and extra-cellular environment of human erythrocytes. Biochem Cell Biol. 1988, 66 (11): 1186-1199. 10.1139/o88-136. [PM:3242565]
Article
Google Scholar
Artmann G, Digel I, Zerlin K, Maggakis-Kelemen C, Linder P, Porst D, Kayser P, Stadler A, Dikta G, Temiz AA: Hemoglobin senses body temperature. Eur Biophys J. 2009, 38 (5): 589-600. 10.1007/s00249-009-0410-8. [PM:19238378]
Article
Google Scholar
Stadler A, Digel I, Artmann G, Embs J, Zaccai G, Buldt G: Hemoglobin dynamics in red blood cells: correlation to body temperature. Biophys J. 2008, 95 (11): 5449-5461. 10.1529/biophysj.108.138040. [PM:18708462]
Article
Google Scholar
Gabel F, Bicout D, Lehnert U, Tehei M, Weik M, Zaccai G: Protein dynamics studied by neutron scattering. Q Rev Biophys. 2002, 35 (4): 327-367. 10.1017/S0033583502003840. [PM:12621860]
Article
Google Scholar
Kelemen C, Chien S, Artmann G: Temperature transition of human hemoglobin at body temperature: effects of calcium. Biophys J. 2001, 80 (6): 2622-2630. 10.1016/S0006-3495(01)76232-7. [PM:11371439]
Article
Google Scholar
Bassam R, Hescheler J, Temiz-Artmann A, Artmann G, Digel I: Effects of spermine NONOate and ATP on the thermal stability of hemoglobin. BMC Biophysics. 2012, 2012. http://www.biomedcentral.com/2046-1682/5/16
Google Scholar
Sigler P: Transcriptional activation. Acid blobs and negative noodles. Nature. 1988, 333 (6170): 210-212. 10.1038/333210a0. [PM:3367995]
Article
Google Scholar
Moncada S, Palmer R, Higgs E: Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991, 43 (2): 109-142. [PM:1852778]
Google Scholar
Ignarro L: Nitric oxide. A novel signal transduction mechanism for transcellular communication. Hypertension. 1990, 16 (5): 477-483. 10.1161/01.HYP.16.5.477. [PM:1977698]
Article
Google Scholar
Schmidt H, Warner T, Ishii K, Sheng H, Murad F: Insulin secretion from pancreatic B cells caused by L-arginine-derived nitrogen oxides. Science. 1992, 255 (5045): 721-723. 10.1126/science.1371193. [PM:1371193]
Article
Google Scholar
Akaike T, Yoshida M, Miyamoto Y, Sato K, Kohno M, Sasamoto K, Miyazaki K, Ueda S, Maeda H: Antagonistic action of imidazolineoxyl N-oxides against endothelium-derived relaxing factor/.NO through a radical reaction. Biochemistry. 1993, 32 (3): 827-832. 10.1021/bi00054a013. [PM:8422387]
Article
Google Scholar
Stamler J, Jaraki O, Osborne J, Simon D, Keaney J, Vita J, Singel D, Valeri C, Loscalzo J: Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin. Proc Natl Acad Sci U S A. 1992, 89 (16): 7674-7677. 10.1073/pnas.89.16.7674. [PM:1502182]
Article
Google Scholar
Saylor P, Wang C, Hirai T, Adams J: A second magnesium ion is critical for ATP binding in the kinase domain of the oncoprotein v-Fps. Biochemistry. 1998, 37 (36): 12624-12630. 10.1021/bi9812672. [PM:9730835]
Article
Google Scholar
Rao S, Rossmann M: Comparison of super-secondary structures in proteins. J Mol Biol. 1973, 76 (2): 241-256. 10.1016/0022-2836(73)90388-4. [PM:4737475]
Article
Google Scholar
Ataullakhanov F, Vitvitsky V: What determines the intracellular ATP concentration. Biosci Rep. 2002, 22 (5-6): 501-511. [PM:12635847]
Article
Google Scholar
Pollack GH: Cells, gels and the engines of life a new, unifying approach to cell function. 2001, Seattle, WA: Ebner & Sons
Google Scholar
Ling G: A physical theory of the living state: application to water and solute distribution. Scanning Microsc. 1988, 2 (2): 899-913. [PM:3399856]
Google Scholar
Lin X, Ayrapetov M, Sun G: Characterization of the interactions between the active site of a protein tyrosine kinase and a divalent metal activator. BMC Biochem. 2005, 6: 25-26. 10.1186/1471-2091-6-25. [PM:16305747]
Article
Google Scholar
Zwart A, Buursma A, van Kampen E, Zijlstra W: Multicomponent analysis of hemoglobin derivatives with reversed-optics spectrophotometer. Clin Chem. 1984, 30 (3): 373-379. [PM:6697482]
Google Scholar
Alberts B, Wilson JH, Hunt T: Molecular biology of the cell, Volume 5th ed., Reference ed. 2008, New York: Garland Science, http://www.loc.gov/catdir/toc/ecip0710/2007005476.html,
Google Scholar
Goss S, Hogg N, Kalyanaraman B: The antioxidant effect of spermine NONOate in human low-density lipoprotein. Chem Res Toxicol. 1995, 8 (5): 800-806. 10.1021/tx00047a021. [PM:7548764]
Article
Google Scholar
Zerlin K, Kasischke N, Digel I, Maggakis-Kelemen C, Temiz AA, Porst D, Kayser P, Linder P, Artmann G: Structural transition temperature of hemoglobins correlates with species’ body temperature. Eur Biophys J. 2007, 37: 1-10. 10.1007/s00249-007-0144-4. [PM:17390129]
Article
Google Scholar
Matveev V: Native aggregation as a cause of origin of temporary cellular structures needed for all forms of cellular activity, signaling and transformations. Theor Biol Med Model. 2010, 7: 19-20. 10.1186/1742-4682-7-19. [PM:20534114]
Article
Google Scholar
Yan Y, Wang Q, He H, Zhou H: Protein thermal aggregation involves distinct regions: sequential events in the heat-induced unfolding and aggregation of hemoglobin. Biophys J. 2004, 86 (3): 1682-1690. 10.1016/S0006-3495(04)74237-X. [PM:14990496]
Article
Google Scholar
Cruz-Ramos H, Crack J, Wu G, Hughes M, Scott C, Thomson A, Green J, Poole R: NO sensing by FNR: regulation of the Escherichia coli NO-detoxifying flavohaemoglobin, Hmp. EMBO J. 2002, 21 (13): 3235-3244. 10.1093/emboj/cdf339. [PM:12093725]
Article
Google Scholar
Chandler D: Interfaces and the driving force of hydrophobic assembly. Nature. 2005, 437 (7059): 640-647. 10.1038/nature04162. [PM:16193038]
Article
Google Scholar
Jackson S, elMasry N, Fersht A: Structure of the hydrophobic core in the transition state for folding of chymotrypsin inhibitor 2: a critical test of the protein engineering method of analysis. Biochemistry. 1993, 32 (42): 11270-11278. 10.1021/bi00093a002. [PM:8218192]
Article
Google Scholar
Yutani K, Ogasahara K, Sugino Y: Effect of amino acid substitutions on conformational stability of a protein. Adv Biophys. 1985, 20: 13-29. [PM:3914832]
Article
Google Scholar
Yan Y, Zhang R, Zhou H: Biphasic reductive unfolding of ribonuclease A is temperature dependent. Eur J Biochem. 2002, 269 (21): 5314-5322. 10.1046/j.1432-1033.2002.03251.x. [PM:12392565]
Article
Google Scholar
Ip S, Ackers G: Thermodynamic studies on subunit assembly in human hemoglobin. Temperature dependence of the dimer-tetramer association constants for oxygenated and unliganded hemoglobins. J Biol Chem. 1977, 252: 82-87. [PM:833132]
Google Scholar
Pace C, Shirley B, McNutt M, Gajiwala K: Forces contributing to the conformational stability of proteins. FASEB J. 1996, 10: 75-83. [PM:8566551]
Google Scholar
Kara F, Gurakan G, Sanin F: Monovalent cations and their influence on activated sludge floc chemistry, structure, and physical characteristics. Biotechnol Bioeng. 2008, 100 (2): 231-239. 10.1002/bit.21755. [PM:18080340]
Article
Google Scholar